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Dense Dilated Network for
Video Action Recognition

Baohan Xu, Hao Ye, Yingbin Zheng, Heng Wang, Tianyu Luwang, Yu-Gang Jiang

Abstract—The ability to recognize actions throughout a video
is essential for surveillance, self-driving, and many other applica-
tions. Although many researchers have investigated deep neural
networks to get a better result in video action recognition, these
networks usually require a large number of well-labeled data
to train. In this paper, we introduce a dense dilated network to
collect action information from snippet-level to global-level. The
dilated dense network is composed of the blocks with densely-
connected dilated convolutions layers. Our proposed framework
is capable of fusing outputs from each layer to learn high-level
representations, and these representations are robust even with
only a few training snippets. We study different spatial and
temporal modality fusing configurations and introduce a novel
temporal guided fusion upon the dense dilated network which can
further boost the performance. We conduct extensive experiments
on two popular video action datasets: UCF101 and HMDB51.
The experiments demonstrate the effectiveness of our proposed
framework.

Index Terms—Action recognition; dilated convolution; two-
stream fusion; video analysis.

I. INTRODUCTION

Video analysis has drawn a significant amount of attention
over the past few years with the prevalence of video capture
devices and the surge of the Internet, and recognize the video
action is of fundamental importance in many video analysis
applications [1]–[6]. Hand-crafted features are proposed to
incorporate spatial and temporal information in the early years
[7]–[9]. With recent progress by applying convolutional neural
networks (ConvNets) to computer vision tasks such as image
classification and object detection [10]–[13], deep ConvNets
are introduced to video action recognition fields with the
capacity of learning discriminative representations. However,
state-of-the-art video action recognition methods are still far
inferior to human performance.

One major challenge in video action recognition is the lack
of a certain amount of well-labeled training data. Due to the
complexity and diversity of videos, video action recognition
system requires orders of magnitude larger training data, com-
pared with image recognition. And constructing large-scale
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Fig. 1. Some example frames of video action dataset UCF101 [14]. Although
the same class of videos contains high-level semantic correlations, different
backgrounds and lack of quality control makes action recognition more
challenging.

video datasets requires a considerable amount of efforts and
resources for collection and annotation. In addition, although
the actions may belong to the same action class, they may
have various backgrounds and different point of views; some
example frames from the videos in the UCF101 dataset [14]
are shown in Fig. 1. It is essential to investigate a deep neural
architecture to capture discriminative features of different
action categories.

Another challenge of video recognition is that many neural
networks focus on explore features from still images. These
methods have difficulties in distinguishing some similar ac-
tions such as walking and running, due to the ambiguous
individual frames. Combining image and optical flow scores
after the classification has also not fully take advantage of
spatial-temporal features. Thus, how to integrate spatial and
temporal cues at a different level is worth to investigate.

To tackle these challenges, we propose a novel dense dilated
neural network, which is able to preserve both spatial and
temporal information with limited training data. The dense
dilated network is consist of pre-trained feature extractors,
dense dilated blocks, and classifiers. Two ConvNets are used
to extract spatial and temporal representations based on still
images and stacked optical flows. The densely connected lay-
ers in dense dilated blocks restore all inputs from proceeding
layers and send these feature maps to consecutive layers.

We also explore different ways to connect dilated dense
blocks and how to fuse spatial and temporal branches. Rather
than integrating spatial and temporal features at softmax layer
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or input layer, fusing them at a convolution layer can also
fully utilize static and motion information. The choices of
layers in dense dilated blocks and numbers of dense dilated
blocks are also practiced to prevent over-fitting with the
limited number of training samples. We report the accuracy
of different architectures as well as the comparison with the
state-of-the-art approaches on two challenging video action
benchmarks, e.g., UCF101 and HMDB51. Our contributions
are summarized as follows:

• We propose a novel deep neural network architecture
combining dilated temporal convolution and densely layer
connection to perform video action recognition. Our
framework can generate new class prototypes while only
a small number of new action videos are needed.

• The dilated dense blocks in our framework are able to
capture spatial-temporal information from both snippet-
level and long-term context.

• We explore the fusion of spatial and temporal network
which we haven’t explored in our preliminary work [15].
We get the insights of the fusion strategies in different
stages of the network and demonstrate that adding tempo-
ral guided connection gives more complementary features
with the spatial network.

• We achieve the state-of-the-art action recognition perfor-
mance on UCF101 and HMDB51 by only using part of
the training videos and then exhibit the effectiveness of
dense connection blocks on few shot action recognition.

The rest of our paper is arranged as follows. We begin with
a brief review of the literature on action recognition and few
shot learning in Section II. In Section III, we give the details
of our framework. And Section IV explores the variations of
the dense dilated network, including implementation stages
of dense connections and two stream fusion configurations.
We show the experimental results conducted on UCF-101
and HMDB51 to demonstrate the effectiveness in Section V.
Section VI concludes the paper.

II. RELATED WORK

A. Video Action Recognition

Video analysis has drawn more and more attention with
the rapid development of smart devices and the Internet. We
can roughly classify the methods of video action analysis
into hand-crafted feature based methods and deep learning
methods.

1) Hand-crafted features: Early researches have explored
the interest points detection and representation. The histogram
of gradient (HoG) [16], space-time interest points (STIP) [7],
and histogram of optical flow (HOF) [8] are introduced to
extract both still image and temporal representations. Other
video analysis tasks such as video summarization are also
benefited from the visual features (e.g., [17]). To collect more
motion information, dense trajectory [9] is proposed to densely
sample and track each pixel within the dense optical flow.
Nevertheless, when facing a significant amount of training
data, the hand-crafted features lack flexibility and scalability.

2) Deep learning methods: The second group of previous
works is mainly based on the deep ConvNets since it achieves
great success in some computer vision tasks recently. Since
the introduction of AlexNet [10] in 2012, the performance
of ImageNet Challenge [18] has been dramatically improved.
Many ConvNets architectures are introduced to perform image
classification and object detection. For example, Simonyan et
al. [11] proposed the VGG net by extending the layers in
the network and won the 2014 ImageNet Challenge. As the
number of layers in the network growing rapidly, the accuracy
has not increased only using stacked convolutional layer. Thus
He et al. [12] proposed a residual function, which takes the
layer inputs into consideration. With a total of 152 layers,
the performance still can be improved from the significantly
increased depth. Other researchers such as Huang et al. [13]
developed a dense connection between layers to take full
advantage of features among different layers. However, despite
the features from still images, these architectures are difficult
to capture temporal information, which is of significant im-
portance in video action analysis task.

To handle these problems, the two-stream approach has
recently been employed in several action recognition meth-
ods. Simonyan et al. [1] proposed a fusion network, which
first decomposes video into spatial and temporal components
by using RGB and optical flow frames. These components
are fed into separate deep ConvNet architectures, to learn
spatial as well as temporal information about the appearance
and movement of the objects in a scene. The two-stream
approach has recently been incorporated in several action
recognition systems [2], [19]–[22], and competitive results
were attained on popular video classification benchmarks, such
as HMDB51 [23], UCF101 [14], and ActivityNet [24]. To date,
this pipeline is the most effective approach of applying deep
learning to action recognition, especially with limited training
data. The potential problem of these two-stream approaches
is, feeding videos into spatial and temporal network separately
may omit the complementary of the two streams.

Many studies paid attention to how to use temporal infor-
mation to achieve multi-modality recognition. Zhao et al. [25]
extracted frame and optical flow features then pooled with two
pooling strategies. Tran et al. [26] adopted 3D CNN (C3D)
for joint learning spatial-temporal representations in video
datasets. Later in [27], Qiu constructed 2D spatial convolutions
and 1D temporal connections to stimulate 3D convolutions.
The deep residual learning framework also designed for ef-
ficiently training a deeper neural network. Instead of using
traditional convolutions, Lea et al. [28] explored temporal
convolutions for action segmentation tasks. Encoder-decoder
temporal convolutional network (TCN) and dilated TCN were
used to capture long-range temporal patterns. However, these
approaches still require a large amount of data and resources
to get a satisfactory result.

B. Few Shot Learning

The limit well-labeled data impedes accuracy gained from
the deeper neural network. A few years ago, some researchers
already studied few shot learning in video action recognition
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Fig. 2. The proposed framework. Videos are divided into n snippets. Temporal segment network (TSN) [28] is used to extract spatial-temporal features of
every snippet. Dense dilated blocks are utilized to densely connect channel wise features. The dilated convolutions help explore temporal relations between
different snippets. Prediction scores are made based on all the feature maps in the network, and the scores of all the snippets are leveraged to perform
video-level prediction.

task. However, the early studies [29], [30] mainly focused
on the dataset such as KTH [31] and Weizmann [32], which
contains several fixed actions performed by actors such as
walking and jogging. Some approaches explored the Hidden
Markov Model (HMM) and encoding scheme and achieve
satisfactory results on the small datasets [33]. When facing
large-scale real-world data, these methods lack scalability.

More recently, transfer learning methods are used due to
well-annotated image data [34] on more larger video bench-
marks, such as UCF101 [14] and HMDB51 [23]. For instance,
Li et al. [35] proposed a video mapping method to encode
videos into a low-dimensional representation with the help of
spatial attention map. These frameworks demonstrated some
promising attempts on the challenging benchmarks, which
have diverse content and lack of quality control. Nevertheless,
these methods require data from other related domains, such
as image and text information, to help recognition rather than
only using video data. And the disadvantage of these methods
is that the significant temporal and motion clues are omitted.

Inspired by previous works, we introduce a dense dilated
framework to perform video action recognition. Rather than
building a deeper or more complicated neural network, we
explore how to take full advantage of the dense connection to
learn inner-class semantic features. Dilated temporal convo-
lution helps expand the receptive fields. Besides, the dense
dilated architecture can converge only using a few layers.
Besides, the complementary of spatial and temporal features
are investigated by the two stream fusion operation.

A preliminary version of our system was described in [15].
In this work, we explore the fusion of spatial and temporal
streams which we haven’t explored in our preliminary work,

and get the insights of the fusion strategies in different stages
of the network. We also extend [15] with state-of-the-art
results on one additional dataset, a comprehensive experiment
of the fusion and block settings, and extensive analysis for all
evaluated datasets.

III. DENSE DILATED NETWORK

A. Architecture
Fig. 2 demonstrates the architecture of our framework.

Our framework is inspired by the DenseNet [13]. Instead of
the traditional feed-forward network, a dense connection on
channel level provides high-information flow in the whole
network. This simple but novel design helps the improvement
on some computer vision tasks even facing small scale of
training data. The basic block in this paper is also built upon
the dense connection between the layers, in order to take full
advantage of spatial-temporal features.

Formally, for each video, the whole video is segmented
into 25 snippets equally. The static video frame images and
the optical flow images are extracted of each snippet. All the
images are feed into Temporal Segment Network (TSN) [28]
to generate spatial features (based on the video frame) and
temporal features (based on the optical flow) separately. We
then use the global pool features before the softmax layer as
the clip presentations. Both the spatial and temporal features
are fed to the dense dilated blocks (which will be described
in detail in the next subsection). The output of the last dense
dilated block can be regarded as the d-dimension representa-
tion of n snippets. We propose majority vote to generate the
final video-level prediction. The network structure of the dense
dilated network is listed in Table I.
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TABLE I
THE STRUCTURE AND SIZE OF OUTPUT IN THE DDN. 25 REPRESENTS THE
25 SEGMENT REPRESENTATIONS WE EXTRACTED FROM TSN. THE 1024

DIMENSION OF SPACIAL FEATURES CONCATENATED WITH 1024
DIMENSION OF TEMPORAL FEATURES TO FORM THE INPUT OF DENSE

DILATED NETWORK. THE 101 IN THE SOFTMAX LAYER REPRESENT THE
101 ACTION CLASSES IN UCF101. THE GROWTH RATE IS SET TO BE

k = 12.

Layers Output Size
TSN 25× 2048

Init Convolution 25× 256
Dense Dilated Block 1 25× 128
Dense Dilated Block 2 25× 64
Dense Dilated Block 3 25× 32

Softmax 101D fully-connected

B. Dense Dilated Blocks

The dense dilated network is consist of several dense dilated
blocks. Fig. 3 illustrates the detailed structure within dense
dilated block, which is composed of three operations: a batch
normalization [36], a convolutional layer, and a rectified linear
unit (ReLU) [37] function1. The use of dense connection can
prevent gradient dispersion due to the stack of feature maps.
Furthermore, the filters in each dense layer are often very
small, which can not only reduce the size of the network
but also has a regularizing effect [13], which can reduce the
overfitting, especially with the smaller amount of training data.

Besides the dense connection, we also incorporate the
dilation during the convolution operation, which is more and
more widely used in recent computer vision applications [38]–
[42]. Different dilation parameters enable the network to get a
different scale of temporal information. More specifically, for
a dense dilated block with L subsequent layers, dilated con-
volution layer l has a growing dilated rate parameter sl = 2l

(l = 1, ..., L). Adding dilation in traditional convolution layer
is able to discover long-term relations in different snippets,
which can provide larger receptive fields to enhance the final
recognition. Thus, the convolution operations are used on two-
time steps, t and t−s. Formally, the weights of the filters can
be regarded as W = {W (1),W (2)}. The dilated convolution
can be defined as

xl
t = f(W (1)xl−1

t−s +W (2)xl−1
t + b), (1)

where xl
t represents the results of dilated convolution on time

t in layer l. The parameter b refer to the bias vector.
The dense connection concatenates feature maps in channel

level of all formal layers, which can provide rich information
flow to the next layer. Even facing the small scale of training
examples, our framework can still get more insight into inner-
class similarity. Similar to the growth rate in DenseNet, we
set the same number of filters ki in each dense dilated blocks
Bi. The output representation Si

t of each block Bi on time
step t can be referred as

Si
t = [xl

t, x
(l−1)
t , . . . , x0

t ], (2)

where Si
t concatenate the feature maps of all layers into a

single tensor.

1The figure is with three convolutional layers, and the effect of different
number of layers will be investigated in Section V-A1.
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Fig. 3. The framework of temporal dense convolution with 3 layers. Every
layer consists of a batch normalization, a dilated convolution, and an activation
function. Different layers are concatenated in a dense way.

C. Transition Layers

To reduce the size of the network, the transition layers
are also added between dense dilated blocks. The layer is
consist of a batch normalization operation, a 1×1 convolution
operation in order to downscale the size of the feature maps.

D. Growth Rate

We refer k as growth rate of different blocks. Each layer
produce ki feature-maps in the i-th block, then the filters of
different blocks can write down as

ki = ki−1 × (l − 1) + k0, (3)

where k0 refer to the number of channels in the input layer,
l is the number of layers in each block. On limited training
data, we show that a relatively small growth rate and a small
number of layers and blocks are sufficient to get high accuracy.

IV. VARIATIONS OF NEURAL NETWORK

In this section, we explore variations of our proposed dense
dilated network. Two variations of our basic framework are
investigated: the first is with different strategies to aggregate
dense dilated blocks and leverage the feature of entire video
and the snippets, and we also study the fusion of the spatial
and temporal streams.
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Fig. 5. Different two stream fusion strategies. The black line represents spatial guided network. The blue line represents temporal guided network. And
another fusion way is concatenate spatial and temporal features.
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level representation.

A. Dense Dilated Aggregation

We introduce different aggregation ways of dense dilated
blocks. The number of basic blocks is empirically set to 3,
and the strategies are demonstrated in Fig. 4, which including
adding the outputs of the blocks, concatenating the outputs
of the blocks and extracting features of different blocks
separately. Although the deeper network and more blocks may
give more insights into the whole video, the different level of
output can also provide different scales of information. The
following explains the details of each strategy.

1) Adding layers: In the first place, we explore adding the
outputs of the dense dilated blocks. The outputs of different
blocks are aligned to the same shapes via 1× 1 convolutions.
The dense dilated adding (DDN-A) strategies is shown more
clearly in Fig. 4(a). Thus, the final representation can be
regarded as:

Zt = ReLU(V

B−1∑
i=0

Si
t + e), (4)

where V is the weight matrix and e is the bias.

2) Concatenating layers: We also study concatenating out-
puts of each block to enlarge the receptive fields in the
final representation. Compare to other aggregating strategies,
concatenating provide a wider range of channels. It shows in
Fig. 4(b) as dense dilated concatenation (DDN-C).

Zt = ReLU([SB−1
t , SB−2

t , . . . , S0
t ] + e). (5)

3) Single block feature: We try to extract the output feature
of different blocks directly, as illustrated in Fig. 4(c). The
strategies are defined as DDN-S1, DDN-S2, and DDN-S3
respectively. This method can help us get more insights into
the neural network.

Due to limited training data, the way of adding or concate-
nating may income overfitting while the feature extraction in
the previous layer may provide enough information and makes
the network more easy to fit the testing data.

B. Two-stream Fusion

Recent years, researchers found that treating videos as static
frames may lose discriminative motion information. Therefore,
optical flow is introduced into video analysis. Besides directly
fusing image features and optical flow features, the two-stream
configuration also becomes popular in video recognition.
The two-stream architecture gives separate weights for image
branch and optical flow branch. The spatial branch captures
significant local information for different classes, while the
temporal branch focuses on continuous motion features. Many
approaches, such as two-stream CNN and TSN, still train two
separate models and only aggregate the spatial and temporal
scores for recognition. In this paper, we would like to evaluate
the ways of fusing spatial and temporal branches and explore
the optimal design to achieves better performance. Traditional
early fusion and late fusion methods are first considered.
The early fusion, which is the baseline in this work as it
is with less parameters, combine the spatial and temporal
features at the input layer (Fig. 5(a)), while the late fusion
concatenate the outputs from the two streams (Fig. 5(b)). Here
we also propose two novel fusion approaches. The spatial
guided fusion fuses the first dense block of the spatial branch
into the temporal branch, to ensure that the temporal branch
receives both temporal features and additional spatial features
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Fig. 6. Two stream fusion diagram. The spatial and temporal streams are
concatenated then feed into 1× 1 convolution.

(Fig. 5(c)). The temporal guided fusion tries to utilize the
additional temporal information by fusing the first dense block
of the temporal branch into the spatial branch (Fig. 5(d)).
Specifically for the spatial guided and temporal guided fusion,
the output features are concatenated using 1 × 1 convolution
to align into the input features. We will evaluate the fusion
methods in the next section. Figure 6 elaborates the fusion of
feature maps.

V. EXPERIMENTS

We evaluate the framework of dense dilated network on
two video recognition benchmarks: UCF101 [14] and HMD-
B51 [23]. UCF101 [14] consists of 101 action classes, 13,320
clips and 27 hours of unconstrained videos collected from
YouTube. The large variations in camera motion, different
background, and illumination conditions make it a challenge
video action dataset. Fig. 7(a) shows some example frames of
different categories in UCF101. HMDB51 [23] is also a popu-
lar video action dataset. It collected mostly from movies with
6849 clips divided into 51 action categories, each containing
a minimum of 101 clips. It remains challenging to recognize
due to low-quality control and a small amount of training set.
Samples from HMDB51 are displayed in Fig. 7(b).

We conduct the extensive evaluation, including the impact
of settings of the dense dilated block, the fusion strategy, and
the few-shot learning, on the UCF101 dataset. And we also
compare our methods with the state-of-the-arts on HMDB51.
We follow the evaluation protocols of these benchmarks. For
each dataset, the experiments are separately done on the three
public train/test splits for comparison, and the final results are
averaged across three test splits.

Implementation details. For the TSN, we choose the
Google Inception network [36] as the basic classification net-
work for both spatial and temporal stream, And the spatial and
temporal TSN models are pre-trained on Kinetics dataset [43]
with 400 action classes and a total of 300,000 video clips.
Each video contains 25 snippets as the default setting in TSN.
The growth rate K of all the block is set as 12 to leverage
the accuracy and the computation cost. The learning rate of
the network is set to be 0.001 and the training epochs are set
to be 15. The network is implemented by PyTorch2.

A. Experiments on UCF101

2https://pytorch.org/

1) Ablation Study: In this section, we perform an ablation
study on the UCF101 dataset. We start by exploring the hyper-
parameters in our frameworks, such as the number of layers
and the growth rate, which may affect the performance. Then
the variations of the network architecture are evaluated to
find the optimal setting of the layer aggregation and fusion
strategies. Throughout the experiments, we use DDN to rep-
resent our dense dilated network, and define our framework
as follows for presentation simplicity.

• DDN-A123/A12: We define A as adding the output of
blocks (see Fig. 4(a)). The numbers represent which
blocks are added.

• DDN-C123/C12: Same as above, C represents concate-
nating of blocks (Fig. 4(b)).

• DDN-Sn: As displayed in Fig. 4(c), S represent single
block feature extraction method, and n denotes the dense
dilated block we extract features from.

• DDN-S2-L/SG/TG: Recall that we define four fusion
strategies in Section IV-B. The default fusion strategy is
the early fusion of spatial and temporal branch (Fig. 5(a)),
thus we define the methods without suffix are based on
early fusion. The methods with suffix L, SG, and TG are
the late fusion, spatial guided fusion, and temporal guided
fusion respectively.

• Baseline experiments: We also conducted baseline exper-
iments with only dense connection (Dense-S2) or dilated
convolution (Dilated-S2).

Number of layers in each dense dilated block. We compare
the performance of our frameworks with a varying number of
layers L in the dense dilated block. In Fig. 8(a), lines show
accuracy for L from 2 to 4. All the methods perform best
at L = 3. Compared to L = 2, more layers in each block
can boost the performance. However, when L gets larger, the
performances of both algorithms are decreased. This is because
complex neural networks lead to underfitting when the scale
of training data is small.

Growth rate. Fig. 8(b) shows how different growth rates
affect the accuracy. Due to limited data, our dense dilated
architecture can converge with relatively small growth rate.
When K = 12 and K = 16, we can achieve relatively
high accuracy without drastically increasing the number of
parameters for all the frameworks.

The influence of Kinetics. To further validate whether the
performance of our proposed methods is affected by the
original training dataset Kinetics [43], we add another simple
experiment to recognize the classes in UCF101 but not in
Kinetics. According to manual visual inspection, about 45
classes in UCF101 are not the same as the classes in Kinetics.
We use DDN-S2 to train 20% of training videos in the 45
classes and make the evaluation. The accuracy is 86.23% of 45
classes. This shows our model can recognize video categories
other than those in the pre-trained models.

Block aggregation strategy. Inspired by DenseNet, we first
proposed dense dilated network with RGB and optical flow
features concatenated as input. The several aggregation ways
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TABLE II
THE ACCURACY(%) AND THE AMOUNT OF PARAMETERS OF DIFFERENT

DESIGN OF DENSE DILATED NETWORK ON UCF101 DATASET.

Method Accuracy Params

(a)
DDN-S1 95.17 0.62M
DDN-S2 96.15 0.62M
DDN-S3 95.48 0.62M

(b)

DDN-A12 95.47 0.36M
DDN-C12 95.76 0.38M

DDN-A123 94.74 0.62M
DDN-C123 95.30 0.67M

(c)
DDN-S2-L 96.26 1.06M

DDN-S2-SG 95.66 1.06M
DDN-S2-TG 96.85 1.06M

(d) Dense-S2 95.37 0.62M
Dilated-S2 95.19 0.22M

described in Fig. 4 are explored, which is the first variation of
the network. With all data in UCF101, (a) and (b) in Table II
reports the accuracy of different aggregation framework. Com-
pared among three strategies, we can clearly find that the worst
result is from DDN-A, while DDN-C shows better result due
to wider reception fields via concatenating channels of feature
maps. One interesting finding is that DDN-S achieves the

best performance with different numbers of blocks compare
to DDN-A and DDN-C.

In the setting of different numbers of blocks, the results
show that all three architectures achieve best results with
two dense dilated blocks. This finding demonstrates that two
dense dilated blocks are enough for video action recognition
on a relatively small dataset. Using the third block may not
only contribute to overfitting but also lose some essential
information during the pooling operation. Besides, we also
conduct baseline experiments only using dense connection or
dilated convolution in Table II(d). The results show that dense
connection would make more contributions to action recogni-
tion. It worth noticing that we also try different combinations
of aggregation and concatenation operations. We report the
results in Table III. The combinations do not show many
improvements thus we continue using the DDN-S2 in the
following experiments.

Fusion strategy. Furthermore, we try to study the two stream
fusion. Fig. 5 shows the detail architectures of different
fusion strategies. As reported in previous experiments, DDN-
S2 achieves the best performance, therefore we choose two
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Fig. 9. Qualitative examples of successful and failure examples on UCF101. The results are based on the DDN-S2-TG model with all the training data.

TABLE III
THE COMBINATION OF CONVOLUTION AND AGGREGATION ON UCF101.

Method Accuracy
A12 + C 94.87
C12 + A 95.03
C + A23 94.78
A + C23 95.12

dense dilated blocks in this evaluation.

As reported in Table II(c), the late fusion (DDN-S2-L)
achieves slightly better result than the early fusion (DDN-
S2). And the late fusion still shows worse performance than
temporal guided network (DDN-S2-TG), which demonstrates
that adding backpropogation on temporal branch helps the
network capture more discriminative features.

Among these architectures, temporal guided network (DDN-
S2-TG) achieves the best performance while spatial guided
network (DDN-S2-SG) performs worse. This indicates that
keeping a temporal branch can provide significant information
for final classification. Compare to spatial feature, temporal
information may be even more complementary with spatial-
temporal information, and only keeping spatial features may
lose motion information and provide redundant features in
video analysis.

TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS ON UCF101.

Method RGB Flow RGB+Flow
C3D [26] 85.20 - -
P3D [27] 88.60 - -

Two-stream fusion [44] 82.60 86.25 93.50
Two-stream MiCT-Net [45] 88.90 - 94.70

Temporal Segment Network [28]3 85.70 87.90 94.20
Dilated TCN [38] - - 92.31

DDN-S2 89.69 92.73 96.15
DDN-S2-L - - 96.26

DDN-S2-SG - - 95.66
DDN-S2-TG - - 96.85

2) Comparison with state-of-the-arts: To evaluate our al-
gorithm, we also compare ours with the state-of-the-art video
action recognition methods, which also make use of spatial-
temporal features.

• C3D [26] proposes a deep 3-dimensional convolution
networks and shows effective for joint learning spatial-
temporal feature.

• P3D [27] proposes a bottleneck block combing spatial-
temporal information to simulate 3D convolutions and

3It worth noticing the reported results of TSN are from the original
TSN paper. For fair comparison, we have finetuned the TSN with Kinetics
pretrained model on UCF101 and HMDB51 with the same dataset splits and
the center crop strategy. The results is 95.61% for UCF101 and 72.84% for
HMDB51.
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Fig. 10. Few shot video action recognition results on UCF101. (a) recognition accuracy with different blocks using DDN-S; (b) recognition accuracy with
differen block aggregation strategies using 2 dense dialted blocks; (c) recognition accuracy of different fusion strategies; (d) recognition accuracy compared
to baseline methods.

reduce the scale of parameters at the same time.
• Two-stream fusion [44] studies some ways of fusing

ConvNet and finds that fuse spatial and temporal network
in convolutional layers rather than the softmax layer can
boost the performance.

• Two-stream MiCT-Net [45] proposes a mixed convo-
lutional tube that integrates 2D CNN with the 3D con-
volution module. This method can generate deeper and
informative feature maps meanwhile reducing training
complexity.

• Temporal segment network [28] applies a sparse tempo-
ral sampling strategy to learn video-level representation.
Two-stream is also considered to improve results.

• Dilated TCN [38] focuses on dilated temporal convolu-
tion. Residual connections and dilated convolutions are
used to perform video segmentation and detection.

Table IV shows the results of video action recognition only
using RGB frames and the temporal guided network. It clearly
shows that our proposed temporal guided network outperform
all baseline methods on both datasets when using all data.
These results demonstrate that adding dense connection is
able to retrieve features from action snippets. The temporal
branch reserve temporal and motion features, while spatial-
temporal is complementary and provide global information.
This also demonstrates that fusion at an early stage can
take full advantage of the complementary of temporal and
spatial features. And even with only RGB frames, our basic
network still outperforms other 3D convolutions and two-
stream networks.

Fig. 9 demonstrates some qualitative examples for success-
ful and failure cases. The top examples are successfully rec-
ognized examples. With the help of temporal guided network,
our methods can successfully classify most of the classes with
different backgrounds and qualities. The green frames refer to
the snippets that our frameworks are more confident, which
also illustrates that the proposed method can identify essential
movements for recognition. The last two rows show some
failure examples. The similar backgrounds and the unclear
movements make the system misclassified these videos into
Haircut and Surfing.

3) Few shot recognition: One of the most significant
challenges in video action recognition is that training deep
ConvNets usually require a large amount of labeled data. With
limited training data, our proposed network can fully utilize
video information and still performs well. Although our model
is pretrained on Kinetics dataset, we have investigated the
influence of overlap classes between Kinetics and UCF101
in Section V-A1. The observation shows that our framework
can recognize new actions without the help of overlap classes.

To enable few shot learning, we randomly sample 10%,
20%, 33%, and 50% videos from the training set. We report
the few shot learning results in Fig. 10 when different amounts
of training videos are used. (a) demonstrates the effects with
different blocks using DDN-S. DDN-S2 consistently perform-
s well. (b) illustrates the different results of block fusion
strategies. DDN-C is comparable with DDN-S2 with 10%
and 20% training data. This shows that when facing limited
training examples, concatenating is also a satisfactory strategy.
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TABLE V
THE ACCURACY(%) AND THE AMOUNT OF PARAMETERS OF DIFFERENT

DESIGN OF DENSE DILATED NETWORK ON HMDB51 DATASET.

Method Accuracy Params
DDN-S1 69.17 0.60M
DDN-S2 73.05 0.60M
DDN-S3 71.85 0.60M

DDN-A12 72.30 0.35M
DDN-C12 72.68 0.35M

DDN-A123 71.34 0.60M
DDN-C123 71.91 0.63M
DDN-S2-L 73.69 1.02M

DDN-S2-SG 71.79 1.02M
DDN-S2-TG 74.51 1.02M

Dense-S2 70.78 0.60M
Dilated-S2 70.07 0.22M

TABLE VI
COMPARISON WITH STATE-OF-THE-ART METHODS ON HMDB51.

Method Accuracy
Two-stream fusion [44] 69.20

Two-stream MiCT-Net [45] 70.50
Temporal Segment Network [28] 69.40

Dilated TCN [38] 68.79
DDN-S2 73.05

DDN-S2-L 73.42
DDN-S2-SG 71.79
DDN-S2-TG 74.51

(c) shows the different fusion strategies of the two-stream
network. The temporal guided network still outperforms all
other methods. (d) reports the comparison of our methods with
baseline methods which reported few shot learning results.
EnergyNet using auxiliary web images to learn attention maps.
It suggests that our DDN-S2-TG method outperform our
baseline methods by a large margin.

It worth mention that our proposed frameworks can also
achieve better performance using fewer videos compared with
the baseline methods using all data. Using only 20% training
videos, temporal guided network outperforms C3D and P3D
which uses 100% training data on UCF101. While with 50%
videos, temporal guided network outperforms all the baseline
methods with whole training data on both datasets. One
interesting finding is that temporal guided network gets more
improvements with less training data. Using 10% training
videos, temporal guided network outperforms spatial guided
network by 3.96%, compared with 2.27% when using 50%
training data. This finding demonstrates our proposed method
can preserve more intra-class relationship than baseline meth-
ods giving little training data.

B. Experiments on HMDB51

To further validate our proposed method, we also perform
evaluations on the HMDB51 dataset. Compared to UCF101,
the HMDB51 has more complex movie background, which is
more challenge for action recognition.

Table V reports the detail results of dense block settings
and fusion strategies. Similar to UCF101, DDN-S2 performs
better than DDN-S1 and DDN-S3, and DDN-S2-TG outper-
forms other fusion approaches. This consistently shows the
effectiveness of our methods. In addition, we propose two
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Fig. 11. Few shot video action recognition results on HMDB51.

baseline experiments using only “dense connection” or “dilat-
ed convolution”. The results also prove that the combination of
dense connnection and dilated convolution makes significant
contribution to action recognition.

We report the performance compared with state-of-the-art
methods in Table VI. The temporal guided methods still
achieve the best performance compared to other fusion ap-
proaches, which is consistent with UCF101. When facing the
limited training data, our proposed network also get promising
results in Fig. 11. Using 20% training data, the result of DDN-
S2-TG is only about 5% percent lower than using all data.
We also report the accuracy of all the classes in HMDB51
in Table VII using 20% and 100% training data. Even with
20% training data, some of the classes can still achieve high
accuracy. The comparison results can be viewed more clearly
in Figure 12. Our method performs better than fuse TSN
features in most classes, especially on long term actions such
as Drink, Eat and Shoot bow. This also demonstrates the
ability to capture long term relations of our proposed method.

The qualitative examples on HMDB51 is shown in Fig. 13.
We can observe that most of the successful examples share
some common clues in actions, while some failure examples
are difficult for recognition due to confusion actions and
complex background.

VI. CONCLUSIONS

We introduce a novel dense dilated framework to perform
video action recognition and few shot learning. The receptive
fields include both local and global features via dense con-
nections. We further explore the different strategies for layer
aggregation among dense dilated blocks. The concatenating
way is better than adding up all the blocks. The features
of the second layer of blocks achieve best results under all
conditions. We then study the fusing configuration of two
stream network. The experiments show that temporal guided
network not only preserves temporal branch information but
also provides complementary features with the spatial branch.
The results show the effectiveness of our proposed framework
compared to baseline methods. Our proposed framework also
achieves state-of-the-art performance when facing limited data.
As future work, we will explore some related topics such as
video segmentation and action detection based on the dense
dilated framework.
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TABLE VII
PRE-CLASS ACCURACY(%) ON HMDB51 (SPLIT 1). 20% AND 100% INDICATE THE RATE OF THE TRAINING DATA USED TO BUILD THE MODELS.

Class 20% 100% Class 20% 100% Class 20% 100% Class 20% 100%
Brush hair 70.00 76.67 Fencing 66.67 70.00 Pullup 100.00 100.00 Smile 40.00 53.33
Cartwheel 46.67 53.33 Flic flac 100.00 100.00 Punch 86.67 90.00 Smoke 66.67 66.67

Catch 66.67 90.00 Golf 100.00 96.67 Push 96.67 96.67 Somersault 83.33 86.67
Chew 76.67 76.67 Handstand 93.33 93.33 Pushup 93.33 96.67 Stand 26.67 70.00
Clap 83.33 76.67 Hit 33.33 70.00 Ride bike 100.00 96.67 Swing baseball 83.33 80.00

Climb 90.00 96.67 Hug 83.33 90.00 Ride horse 73.33 90.00 Sword exercise 73.33 76.67
Climb stairs 60.00 66.67 Jump 26.67 46.67 Run 53.33 70.00 Sword 33.33 33.33

Dive 56.67 66.67 Kick ball 76.67 70.00 Shake hands 83.33 86.67 Talk 56.67 70.00
Draw sword 53.33 83.33 Kick 56.67 60.00 Shoot ball 80.00 96.67 Throw 40.00 33.33

Dribble 86.67 90.00 Kiss 90.00 83.33 Shoot bow 86.67 86.67 Turn 46.67 60.00
Drink 53.33 90.00 Laugh 83.33 66.67 Shoot gun 63.33 63.33 Walk 26.67 40.00
Eat 63.33 70.00 Pick 43.33 46.67 Sit 56.67 63.33 Wave 23.33 26.67

Fall floor 36.67 56.67 Pour 76.67 86.67 Situp 100.00 100.00 mean 68.30 74.51

0.00%

20.00%

40.00%
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80.00%

100.00%
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Action classes

100%
20%
Fusing TSN Feature

Fig. 12. Per-class accuracy of HMDB51 dataset using 100% traning examples, 20% traning examples with DDN-S2-TG, and only simply fuse the results of
TSN features.
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