
Document Image Layout Analysis via Explicit Edge Embedding Network

Xingjiao Wu1*, Yingbin Zheng2∗, Tianlong Ma1†, Hao Ye2, Liang He1†
1East China Normal University, Shanghai, China 2Videt Lab, Shanghai, China

Abstract

Layout analysis from a document image plays an impor-
tant role in document content understanding and informa-
tion extraction systems. While many existing methods focus
on learning knowledge with convolutional networks directly
from color channels, we argue the importance of high-
frequency structures in document images, especially edge
information. In this paper, we present a novel document lay-
out analysis framework with the Explicit Edge Embedding
Network. Specifically, the proposed network contains the
edge embedding block and dynamic skip connection block
to produce detailed features, as well as a lightweight fully
convolutional subnet as the backbone for the effectiveness
of the framework. The edge embedding block is designed to
explicitly incorporate the edge information from the docu-
ment images. The dynamic skip connection block aims to
learn both color and edge representations with learnable
weights. In contrast to the previous methods, we harness the
model by using a synthetic document approach to overcome
data scarcity. The combination of data augmentation and
edge embedding is important toward a more compact rep-
resentation than directly using the training images with only
color channels. We conduct experiments using the proposed
framework on three document layout analysis benchmarks
and demonstrate its superiority in terms of effectiveness and
efficiency over previous approaches.

1. Introduction
Document layout analysis (DLA) aims to divide a docu-

ment image into different regions, such as text, figures, and
tables. Analysis of the layout from the document image
plays an important role in document content understanding
and information extraction applications, such as document
understanding [48], knowledge extraction [7, 39], handwrit-
ing recognition [6], and biomedical event extraction [50]. A
modern DLA system usually consists of page segmentation
and logical structure analysis steps, and great progress has
been achieved in recent years [5].

*These authors contributed equally to this work.
†Co-corresponding authors.

Figure 1: Left: the original document images. Middle:
ground-truth of the layouts (segmentation label colors are:
figure , table , and text ). Right: edges extracted by the

Laplacian edge detectors [40].

Accurately estimating the content categories in a doc-
ument is still a challenging task due to the gap between
the high-level semantic and low-level visual contents of the
documents. While many existing methods focus on learn-
ing knowledge with convolutional networks directly from
color channels, we argue the importance of high-frequency
structures in document images, especially edge informa-
tion. The edges can provide skeleton information that is
useful to understand the document structure. Specifically,
the edges usually contain the classification attributes of im-
age regions and make the characteristics of document layout
more prominent. An example is shown in Fig. 1, where the
edge of text regions has a dense texture, the edge of fig-
ures is relatively smooth, and the edge of tables contains
more straight lines. Inspired by these observations, this pa-
per works toward an effective layout analysis framework by
incorporating explicit edge knowledge. We design the Ex-
plicit Edge Embedding Network (E3Net), which superim-
poses the edge information onto the image channel to gen-
erate a more efficient image input block.

We employ the Fully Convolutional Network (FCN,
[24]) as the backbone. FCN is composed of layers that
represent high-level and low-level information through the
encoding part and then superimposes these features from
these response maps onto the decoder. The low-level feature
maps tend to contain detailed information, while the high-
level feature maps have more semantic information. Explor-
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ing a network structure that can effectively connect high-
level features and low-level features is also crucial. Inspired
by the adaption branches strategy [44], we consider dynam-
ically learning the connection structure from the edge rep-
resentation, and thus we propose the dynamic skip connec-
tion block. The core idea of the dynamic skip connection
block is to calculate the information gain of the encoding
features and add them to the decoding layer by using differ-
ently weighted overlaps. We report the impacts of different
components as well as the comparison with the state-of-the-
art approaches on three challenging DLA benchmarks, i.e.,
DSSE-200 [47], CS-150 [9], and ICDAR2015 [2].

In addition, we augment the data to ensure the univer-
sality of the models better. The LaTex is used as a com-
position engine with contents (images, tables, and text) we
prepared to synthetic data. However, the LaTex style can-
not generate unnormal printing scale texts. The difference
from the previous work is that we use some images that in-
clude unconventional texts to replace text to overcome the
limitation of the LaTex. To generate more image styles,
we use the MS COCO dataset [22] as the image material.
Since the MS COCO images are annotated, we can easily
obtain the corresponding image description to easily gener-
ate the title and description of the image. We use the data
synthetic method to generate many samples and provide a
closed-loop iteratively update the sample library to realize
automatic learning of the model.

Our contributions are summarized as follows.

• For the layout task, we propose explicitly embedding
edge information onto the image channels to generate
a more efficient image input module. To focus on fea-
ture learning, we utilize the edge by generating three
edge channels. We propose explicitly embedding edge
information onto the image channel to generate a more
efficient image input module for the layout task.

• To obtain a universal and effective layout analysis
model, we employ the dynamic skip connection on the
FCN backbone for the learning of edge representation
and improve the data synthetic method for training data
generation.

• Extensive evaluations demonstrate the superior perfor-
mance of the proposed E3Net. Notably, we achieve
state-of-the-art results on three document layout anal-
ysis datasets compared with the existing methods. We
also conduct an ablation study to evaluate the effect of
the edge embedding block and the dynamic skip con-
nection block. Our whole system can process approxi-
mately 8 document images per second.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the background of document layout anal-
ysis. Section 3 discusses the model design and network ar-

chitecture in detail. In Section 4, we demonstrate the quali-
tative and quantitative study of the framework. Finally, we
conclude our work in Section 5.

2. Related Work

Early DLA work can be divided into two categories, i.e.,
top-down and bottom-up strategies [5].

The top-down strategy iteratively divides pages into
columns, blocks, lines of text, and words. The represen-
tative works belonging to the top-down strategy include
texture-based analysis [3], run-length smearing [35], DLA
projection-profile [30] and white space analysis [31]. The
bottom-up strategy [37, 27, 25, 38] dynamically obtains
document analysis results from a small, granular data level.
It first uses some local features inherent from the text (such
as black and white pixel spacing or connection spacing) to
detect individual words and then groups the words into lines
of text and paragraphs. The top-down methods and the
bottom-up methods deal with common rectangular image
layouts that are successful. However, for complex layouts,
these methods do not seem to be as effective.

With recent advances in deep convolutional neural net-
works, several methods based on neural networks have been
proposed [14, 46, 20, 41, 52, 51, 34, 19, 45, 43]. For
example, He et al. [14] used a multiscale network for se-
mantic page segmentation and element contour detection
based on three types of document elements (text blocks,
tables, and figures). Recently, the DLA task can also be
considered a semantic segmentation task, which is to per-
form a pixel-level understanding of the segmentation ob-
ject [46, 51, 34, 19]. Xu et al. [46] trained the multitask
FCN to segment the document image into different regions,
and Soullard et al. [34] used the FCN for historical news-
paper images. Zheng et al. [51] further included a deep
generative model for graphic design layouts to synthesize
layout designs. Li et al. [19] proposed the cross-domain
DOD model to learn the model for the target domain us-
ing labeled data from the source domain and unlabeled data
from the target domain. Here many of these papers employ
the FCN [24] for semantic segmentation of the document
pages. With the help of a full convolution structure, FCN
can adapt to any size of the image with the pooling oper-
ation, which balances the speed and accuracy. However,
it also causes the spatial information from the image to be
weakened during the propagation process. To compensate
for this problem, we use a skip connection structure to en-
hance spatial information.

Data augmentation. In addition to improving the net-
work structure, many researchers focus on the expansion
of data. Some large-scale datasets with additional tools are
proposed, and good results have been achieved through the
migration of these datasets. Yang et al. [47] proposed a
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Figure 2: Architecture of the Explicit Edge Embedding Network (E3Net).

synthetic dataset and an end-to-end multimodal FCN with
text embedding for extracting semantic structures from doc-
uments. Andreas et al. [16] introduced a very challenging
dataset of historic German documents of the task of rec-
ognizing handwritten documents. Li et al. [18] used Lay-
outGAN to augment the data by generating a different lay-
out. Haurilet et al. [13] introduced the SPaSe (slide page
segmentation) dataset, which contains dense, pixelwise an-
notations of 25 classes for 2000 slides. Siegel et al. [32]
proposed a method to induce high-quality labels to lever-
age auxiliary data from arXiv and PubMed with no human
intervention.

At present, data enhancement methods are mainly di-
vided into the following types, and one is generated by us-
ing existing auxiliary data. Such data mainly come from
scientific documents, such as arXiv and other network re-
sources. The other is generated through the Generative
Adversarial Network (GAN), and finally generated by the
LaTex. Using LaTex generation is a simple and effective
method, but the text generated in this way is relatively sim-
ple due to the LaTex limitation. The older font generation
method ignores the relatively large font, and the font of the
text is limited. We use some novels as our text source; in
this way, we can use the constraint that our basic unit of text
is word-level, and we can control the position of the label
box more precisely during the process of text synthesis.

3. Method
As shown in Fig. 2, E3Net is composed of four parts:

the edge embedding block (EEB), an encoder structure, a
decoder structure, and the dynamic skip connection block
(DSC). We show the encoder structure, the decoder struc-
ture, and the dynamic skip connection block in Table 1. In
this section, we first introduce the edge embedding block
and then the dynamic skip connection block. Finally, we
introduce the strategy of data synthesis.

original Sobel Canny LaplaceFigure 3: The edge information from edge extraction meth-
ods that are used in the E3Net. From left to right: original
image, edge maps extracted by Sobel, Canny, and Lapla-
cian.

3.1. Edge Embedding Block

The edges are direct characterizations of the image and
include some categorical properties. The use of edge in-
formation for improved image processing/analysis has at-
tracted many researchers to explore due to its excellent
performance [23, 42, 1, 36, 12, 26].These edge extraction
methods can suppress the noise and ringing artifacts and
smooth the staircases.

To embed edge knowledge, we propose the edge embed-
ding block (EEB), which superimposes edge information
on the image channel to build a more effective image in-
put block. Different edge extraction algorithms focus on
different edge information and edge strengths. As shown
in Fig. 3, the edges extracted by one operator cannot rep-
resent the overall edge information. In addition, to balance
the number of channels, we propose using three different
edge extraction operators for edge extraction. In this paper,
we use the Sobel edge detector [15], Laplacian edge detec-
tor [40] and Canny edge detector [11] to locate sharp inten-
sity changes and to find object boundaries in an image. Pre-
vious work, such as [23], achieved good edge detection ef-
fects. However, the ablation study in the experiments shows
that our combination is more suitable for this architecture.



Algorithm 1: Augment input channels with edge
Input: I (w × h× 3) : Original image channels
Output: E (w × h× 6) : Augmented channels

1 Obtain image RGB channels IR, IG, IB ;
2 Obtain the grayscale Ig = Gray (IR, IG, IB);
3 Edge map by Sobel IS = Sobel (Ig);
4 Edge map by Laplacian IL = Laplacian (Ig);
5 Edge map by Canny IC = Canny (Ig);
6 Augmented channels

E = cat {IR, IG, IB , IS , IL, IC};
7 return E.

Adding edge information can reduce the image’s depen-
dence on color to let the model focus on the learning of
features. The input channels are enhanced by explicitly
appending edge information to the original image. Algo-
rithm 1 shows the step to generating the augmented chan-
nels. We first obtain the RGB channel of the image and
process the image into a grayscale image. Then, we use the
Sobel, Laplacian, and Canny edge detectors to locate sharp
intensity changes and to find object boundaries in an image.
Finally, we superimposed the RGB channel and the three
edge maps as a 6-channel to accomplish the input. The EEB
consists of 6 channels, three of which are the RGB channels
of the image, and the remaining three channels are the edge
information of the image.

3.2. FCN with Dynamic Skip Connection

It is an important task of learning edge representation
knowledge effectively. From the perspective of feature
learning, low-level feature maps contain more detailed in-
formation, while high-level feature maps contain more se-
mantic information. Traditional FCN cannot explicitly rep-
resent features because it only connects the encoder and the
decoder for superimposing the feature information [21]. We
propose a dynamic skip connection block (DSC) to tackle
this problem. The core idea of DSC is calculating the in-
formation gain of the encoder feature and adding the infor-
mation gain to the decoder layer by using different weights.
Our method focuses on pixelwise segmentation with a fully
convolutional network that uses an edge embedding block
and a dynamic skip connection block. We use a lightweight
model as the backbone to maintain the model processing
speed, and the backbone parameter amounts to only 1/6 of
VGG16 [33]. The backbone is divided into two parts, the
encoder and the decoder. The structure of the encoder is
shown in the first column of Table 1. It uses the 3× 3 con-
volution kernel and uses four max-pooling, and the encoder
will reduce the image to 1/16 of the original. The decoder
structure is shown in the third column of Table 1. The de-
coder order is 256-128-64-32-16 from bottom to top, and

each decoding layer is composed of the deconvolution, the
ReLU activation function, and the batch regularization.

The dynamic skip connection block is a learnable con-
nection operation added based on U-Net [29]. The high-
level features and low-level features will carry different in-
formation intensities, but the traditional U-Net directly con-
nects to the encoder and decoder. This connected method
cannot distinguish high-level information and low-level in-
formation well. For more effective use of information in
different dimensions, we connect the high-level features and
the low-level features using a learnable unit. The dynamic
skip connection block is structured with three parallel path-
ways. The first pathway is designed for low-level feature fu-
sion with the structure is: GAP(1)-FC(32, 4)-RELU-FC(4,
32)-Sigmoid. The second pathway structure is: GAP(1) -
FC(64, 8) - RELU - FC(8, 64) - Sigmoid. The third pathway
is designed for high-level feature fusion , and its structure is:
GAP(1)-FC(128, 16)-RELU-FC(16, 128)-Sigmoid. Where
‘GAP’ represents a Global Average Pooling layer, ‘RELU’
represents a rectified linear unit, ‘FC’ represents the fully
connected layer and ‘Sigmoid’ represents the sigmoid acti-
vation function. The numbers in the parentheses of FC are
the input parameter and the output parameter. Each pathway
outputs a regularized weight, and the sum of the weights of
the three pathways is 1. After obtaining the weight coeffi-
cients, we multiply the feature layer obtained by the encoder
by the corresponding weight coefficient and superimpose it
on the corresponding feature layer of the decoder.
Loss. Cross-entropy loss is used as the loss function:

L(x, label) = −wlabel log
exlabel∑N
j=1 e

xj

= wlabel

(
−xlabel + log

∑N

j=1
exj

)
,

(1)

where x ∈ RN is the activation value without softmax, N is
the feature dimension of x, label ∈ [0, C−1] is the scalar of
the corresponding label, C is the number of classifications
to be classified, and w ∈ RC is the label weight.

3.3. Synthetic Document Data

The prerequisite for training a universal model is to pro-
vide enough data. At present, the annotation data of the
document layout analysis task are limited, so we improved
the data synthesis method proposed in [47]. Compared with
previous work, our data synthesis method introduces more
text elements. We add some special text images to make the
generated samples more natural and realistic. In addition,
we propose a semiautomatic man-machine hybrid labeling
mode to provide more diverse data sources.

The document synthetic can be seen as a simple jigsaw
puzzle, and we will add table, figure, and text to an A4 for-
mat document. We use LaTex to generate pdf by combining



Table 1: Configuration of the backbone. All convolu-
tional layers use padding to maintain the previous size. The
convolutional layer parameters are denoted as conv-(kernel
size)-(number of filters)-(dilation rate), and max-pooling
layers are conducted over a 2 pixel window with stride 2.
Here, deconv, conv, pool, and FC represent the deconvolu-
tion layer, convolution layer, max-pooling layer, and fully
connected layer, respectively.

encoder ⇓ dynamic skip connection decoder ⇑

conv3-6-1
conv3-32-1
conv3-32-1

max-pooling

GAP
FC-32-4
RELU

FC-4-32
Sigmoid

deconv3-32-1
RELU
BN(64)
deconv3-16-1
conv1-4-1

conv3-64-1
conv3-64-1

max-pooling

GAP
FC-64-8
RELU

FC-8-64
Sigmoid

deconv3-64-1
RELU
BN(32)

conv3-128-1
conv3-128-1
conv3-128-1
max-pooling

GAP
FC-128-16

RELU
FC-16-128
Sigmoid

deconv3-128-1
RELU
BN(64)

conv3-256-1
conv3-256-1
conv3-256-1
max-pooling

deconv3-256-1
RELU
BN(128)

images, tables, and texts. We prepare the necessary material
by collecting figures and tables from web resources. More-
over, to enrich the image information, we use some images
from MS COCO [22] and randomly add the corresponding
image title. Due to the limitations of the type of text gen-
erated by LaTex, we not only directly use the novel as text
sources to generate pdf but also include unconventional text
images as text sources. Using these text sources can over-
come the limitation of LaTex. Using the novel material to
constrain the minimum unit is wordlevel. Constraint mini-
mum units can avoid format problems that appear by using
some network resources (for example, a paragraph without
spaces or some meaningless text resources). Using LaTex
to generate the pdf, we can easily obtain the corresponding
label. We synthesized images, as shown in Fig. 4, and we
can see that our synthesis data are very similar to the real
document images.

The E3Net has been able to obtain good results in prac-
tical problems. Furthermore, we want to provide a better
user experience. Therefore, we propose a semiautomatic
hybrid data annotation strategy using a human-machine hy-
brid. Our training process can regard as a closed-loop. We

Figure 4: Sample synthetic documents.

use synthetic data to train E3Net and test it after a random
epoch. The test data are unlabeled; furthermore, we cannot
obtain the specific indicators, but we can distinguish the ta-
ble using edge detection. We use edge detection to obtain
a table area, and we use the table area as the masking la-
bel. We will compare it with the classified prediction map.
We will choose high error rate images and annotate this im-
age. We split these images into different elements (table and
figure) and put them to the data source to generate new data
samples for retraining. Specifically, we first input unlabeled
data into the layout model and obtain the predicted result. In
addition, the unlabeled data will be input to a nonartificial
intelligence algorithm (the table detection algorithm base
rule) to obtain the table area. We will compare the table in-
formation predicted by the two algorithms. We will choose
those inconsistent data (i.e., data with a degree of differ-
ence of more than 60%) and manually label those data into
the data pool. We split out the elements (table and figure)
in these data and put them into the data generation model to
generate more new data.

4. Evaluation and Discussion
We evaluate the proposed E3Net on three document lay-

out analysis benchmarks: DSSE-200 [47], CS-150 [9], and
ICDAR2015 [2]. We first introduce the experimental con-
figuration. Then we show the qualitative results and com-
pare E3Net with prior works. Finally, we consider the ab-
lation study on DSSE-200 to evaluate the effect of the dy-
namic skip connection block and the edge embedding block.

4.1. Configurations

Categories and model training. There is no unified stan-
dard on the classification for layout at present. Many pre-
vious works divided the layout into three categories: figure,
tables, and others. Some works are divided into the follow-
ing seven categories: figure, table, paragraph, background,
caption, lists, and section. However, if only the figure and
tables are classified, we cannot effectively use the text and
background information. If there are too many categories,
it will be more cumbersome for the layout work. This pa-
per makes a trade-off and considers the following four cate-
gories: text, figure, table, and background. We fine-tune the



Figure 5: Example real documents (top) and their cor-
responding segmentation predictions (bottom) on three
datasets. Segmentation label colors are: figure , table ,

text , background (for DSSE-200 and ICDAR2015) and
non-text (for CS-150).

model by randomly select 10% of the target dataset as the
train data, and then we reduce the learning rate to 1/10 of
the original learning rate. To prevent overfitting due to too
little data, we split the elements (tables and figures) of the
data and then put these elements into the LaTex document
synthesis engine for data expansion. We use these data to
fine-tune the model.

Metric. Several metrics are used to evaluate the perfor-

mance. We first define M as the n × n confusion matrix
with n categories. Accuracy (Acc) is the ratio of the pixels
that are correctly predicted in a given image, i.e.,

Acc =

∑
i Mii∑
ij Mij

(2)

Precision (P) is the ratio that is actually a positive example
in the example that is divided into positive examples, i.e.,

P =
1

n

n∑
i=1

Pi Pi =
Mii∑
j Mji

(3)

Recall (R) measures the coverage. There are multiple pos-
itive examples of metrics that are divided into positive ex-
amples, i.e.,

R =
1

n

n∑
i=1

Ri Ri =
Mii∑
j Mij

(4)

F1 is an indicator used to measure the accuracy of a binary
model. It also takes into account the accuracy and recall
rate of the classification model. The F1 score can be seen
as a weighted average of model accuracy and recall:

F1 =
2 · P ·R
P +R

(5)

MIoU is the mean intersection-overuunion of each fore-
ground category, i.e.,

MIoU =
1

n+ 1

n∑
i=0

Mii∑n
j=0 Mij +

∑n
j=0 Mji −Mii

(6)

Datasets. We employ three benchmarks for evaluation.
DSSE-200 [47] is a comprehensive dataset that includes var-
ious dataset styles. It contains 200 images, including pic-
tures, PPT, brochure documents, old newspapers, and scan
files with light changes. CS-150 [9] is a dataset consist-
ing of 150 papers. CS-150 is divided into three categories,
images, tables, and others, consisting of 1175 samples. IC-
DAR2015 focuses on appearance-based regions [2]. It con-
sists of a magazine and journal that contain 7 training sets
and 70 tests. ICDAR2015 is not a simple rectangular seg-
mentation and is directly embedded in the paragraph. The
sample dataset are illustrated in the top rows of Fig. 5.

4.2. Qualitative Results

DSSE-200. We use the synthetic dataset to train the net-
work and make predictions on the DSSE-200 dataset. The
overall performance of E3Net is accuracy 0.82, precision
0.79, recall 0.73, F1 0.76, and MIoU 0.57; the confusion
matrix is illustrated in Fig. 6-Left. We can observe that



Table 2: Per-category comparison based on IoU scores (%) on the DSSE-200. FT indicates the model with fine-tuning.

Method background figure table section caption list paragraph mean

MFCN [47] 83.9 83.7 79.7 59.4 61.1 68.4 79.3 73.3

E3Net 95.9 88.8 90.7 89.8 41.6 71.2 56.7 76.3
E3Net (FT) 96.5 96.1 93.0 77.0 50.4 60.6 68.3 77.4

Table 3: Comparing E3Net with previous network structures on the DSSE-200 and CS-150 datasets.

Method #Parameters
DSSE-200 CS-150

Acc P R F1 MIoU Acc P R F1 MIoU

SegNet [4] 29M 0.76 0.71 0.72 0.71 0.49 0.76 0.71 0.72 0.71 0.49
PANet [17] 168M 0.79 0.74 0.72 0.73 0.53 0.96 0.82 0.91 0.87 0.52
PSPNet [49] 46M 0.72 0.69 0.79 0.74 0.51 0.96 0.84 0.97 0.90 0.63
DV3+ [8] 53M 0.78 0.72 0.75 0.73 0.64 0.96 0.81 0.97 0.88 0.63
E3Net 3M 0.82 0.79 0.73 0.76 0.57 0.96 0.85 0.97 0.91 0.64

Figure 6: Confusion matrices for DSSE-200 (left) and CS-
150 (right).

Table 4: Per-category comparison based on CS-150.

Method
figure table

P R F1 P R F1

Praczyk et al. [28] 0.624 0.500 0.555 0.429 0.363 0.393
Clark et al. [10] 0.961 0.911 0.935 0.962 0.921 0.941
Clark et al. [9] 0.980 0.961 0.970 0.979 0.963 0.971
E3Net 0.938 0.972 0.956 0.834 0.988 0.905
E3Net (FT) 0.986 0.970 0.978 0.971 0.977 0.973

E3Net has excellent recognition rates for backgrounds, fig-
ures, and tables, as the edge information is used to improve
background discrimination. However, the ability to recog-
nize text is slightly lower than other categories, e.g., some
text pixels are recognized as the table, probably because the
contents for text and table are quite similar. The sample
documents and their corresponding predictions in DSSE-
200 are shown in Fig. 5(a). In general, the document lay-
outs are correctly extracted, and the border of the regions
can be refined with postprocessing steps such as connected
component analysis.

CS-150. We follow the same step in DSSE-200 to conduct

Table 5: Per-category comparison based on IoU scores (%)
on ICDAR2015.

Method non-text text figure mean

MFCN [47] 94.5 91.0 77.1 87.53

E3Net 81.6 79.1 85.0 81.87
E3Net (FT) 90.1 88.3 93.5 90.59

an experiment of CS-150, and the results are accuracy 0.96,
precision 0.85, recall 0.97, F1 0.91, and MIoU 0.64. The
performance is good in CS-150 for both the overall metrics
and the per-category results (as shown in the confusion ma-
trix of Fig. 6-Right). The CS-150 dataset is entirely com-
posed of scientific papers, and the layout is relatively sim-
ple. We demonstrate some document images and the corre-
sponding predictions of CS-150 in Fig. 5(b).

ICDAR2015. We also conduct qualitative results for IC-
DAR2015, as illustrated in Fig. 5(c). With the help of
an edge embedding network, our methods can successfully
classify most of the pixels into layout categories with dif-
ferent backgrounds and visual contents. In addition, we can
see that E3Net has a successful effect of dealing with the
figure that is directly embedded in the text paragraph.

4.3. Comparison with Prior Arts

To evaluate our model, we compare it with state-of-the-
art document layout analysis methods, which also make use
of image content as input. We follow the settings and eval-
uation protocols of [47] (for DSSE-200 and ICDAR2015)
and [9] (for CS-150).

For the DSSE-200 dataset, we can see that our results
are more effective than those in [47] (Table 2). It is worth
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Figure 7: Network for two-stream fusion.

Table 6: Comparison with two-stream fusion.

Method Acc P R F1 MIoU

E3Netw/oEdge 0.70 0.75 0.62 0.68 0.46
Two-stream fusion 0.74 0.72 0.66 0.69 0.53
E3Net 0.82 0.79 0.73 0.76 0.57

noting that the edge contains more discriminative informa-
tion for background regions; therefore, E3Net can obtain
good results for background recognition even without fine-
tuning. E3Net has a better recognition effect for figures,
tables, and sections, and the mean score improves 4% com-
pared with [47]. For the ICDAR2015 dataset, as listed in
Table 5, E3Net with fine-tuning also achieves a 3% mean
score improvement over [47]. In the comparison for CS-
150, we use the precision, recall, and F1 as the metric, and
the results in Table 4 show that ours outperform previous
approaches for both the figure and table categories. Specif-
ically, when we use E3Net trained from synthetic docu-
ments without fine-tuning, the overall performance is com-
parable, and the recall rate is high. Fine-tuning brings the
distribution of the CS-150 data and improves the precision
of the whole network.

As mentioned in the previous sections, E3Net is de-
signed based on an FCN-like backbone. Here, we also com-
pare our approach with the state-of-the-art network for the
general semantic segmentation task. Table 3 reports the per-
formance on the DSSE-200 and CS-150 datasets with dif-
ferent metrics. We can observe that the proposed E3Net
achieves better results, while the parameter size is much
smaller than others.

4.4. Ablation Study

In this section, we perform an ablation study on the
DSSE-200 dataset. We start by exploring the variations of
the network architecture to find the optimal set of fusion
strategies. Then the components in our frameworks, such as
the edge embedding block and the skip connection, are eval-
uated. Throughout the experiments, we use E3Netw/oX to
represent the network of E3Net without component X for
presentation simplicity.

Table 7: Evaluation of different edge embedding settings.
LSB indicates the edge embedding block by Laplacian, So-
bel, and bilateral filter.

Method Acc P R F1 MIoU

E3Net 0.82 0.79 0.73 0.76 0.57
E3Netw/oEdge 0.70 0.75 0.62 0.68 0.46
E3Net (Sobel) 0.78 0.73 0.77 0.75 0.58
E3Net (LSB) 0.78 0.73 0.76 0.75 0.51

Figure 8: Confusion matrix for DSSE-200. Left: E3Net,
Right: E3Net (LSB).

Table 8: Evaluation of the dynamic skip connection.

Method Acc P R F1 MIoU

E3Net 0.82 0.79 0.73 0.76 0.57
E3Netw/oDSC 0.73 0.69 0.66 0.67 0.50
E3Netw/oEdge 0.70 0.75 0.62 0.68 0.46
E3Netw/oEdge&DSC 0.67 0.63 0.64 0.64 0.48

Model architecture. The design of an effective network
is of great importance for model learning. In this paper,
we fuse the color channels and the edge explicitly into the
augmented input, and another potential approach is to treat
them as two independent steams and fuse them in the last
few layers. Fig. 7 demonstrates the architecture of two-
stream fusion, which consists of two branches, two inde-
pendent encoders, and one decoder for the fusion. We list
the comparison in Table 6. Adding edge information under
a two-stream framework improves the performance (for ac-
curacy, F1, and MIoU). However, compared with E3Net,
the effect is limited. This demonstrates that fusion at an
early stage can take full advantage of the complementarity
of color and edge clues.

Edge embedding. In this section, we verify the effect of the
EEB block. As shown in Table 7, removing the edge em-
bedding causes a drop in all metrics, e.g., 12% for accuracy
and 11% MIoU. We also compare different edge embedding
settings. The first is to use the single-channel Sobel edges
(E3Net (Sobel) in Table 7). The results show that E3Net
outperforms E3Net (Sobel) by using more edge represen-



tation, probably because of the complementarity of different
edge detectors. The second group of experiments involves
changing the edge detector in the EEB to other detectors.
Here, we replace Canny with the bilateral filter and build
the model of E3Net (LSB). From the table, we can see that
this combination is not as good as the original E3Net. We
make the confusion matrix for both networks (Fig. 8) and
find that the E3Net with Laplacian, Sobel, and Canny edge
detectors has significantly better representation for the texts
and figures.

Dynamic skip connection. Incorporating the skip connec-
tion has been proven to be useful for many computer vision
tasks, and we wonder whether it can promote a document
layout analysis system. As shown in Table 8, the substantial
performance gains over E3Netw/oDSC confirm the effec-
tiveness of using the dynamic skip connection for the DLA
task. Although adding the DSC into a traditional FCN with-
out edges also improves the performance (Table 8, rows 3
and 4), the network combined with DSC and edge embed-
ding has been improved on a larger scale and is able to show
the powerful descriptive ability of document layouts.

Speed. The proposed framework is trained and evaluated
on a GPU. Inference using an image with a size of 512 ×
384 pixels takes 0.12 seconds with a single Nvidia Titan
Xp, meaning that our whole system can generally process
approximately 8 document images per second.

5. Conclusions
In this paper, we presented a novel solution for construct-

ing a model of universal document layout analysis. Our
approach explored the use of the dynamic skip connection
block and edge information to improve the model structure
and the construction of a complete synthetic data scheme.
We present a dynamic skip connection block that can be dy-
namically provisioned based on specific instances. We use
the edge embedding block to let the model more focused on
text content. In addition, we discuss the feasibility of the fu-
sion strategy with the edge. Experimental comparisons with
the state-of-the-art approaches on DSSE-200, CS-150, and
ICDAR2015 showed the effectiveness and efficiency of our
proposed E3Net for the document layout analysis task.
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