
IJCV manuscript No.
(will be inserted by the editor)

A Coarse-to-Fine Framework for Resource Efficient
Video Recognition

Zuxuan Wu1, Hengduo Li2, Yingbin Zheng3, Caiming Xiong4,
Yu-Gang Jiang1, Larry S. Davis2

Received: date / Accepted: date

Abstract Deep neural networks have demonstrated
remarkable recognition results on video classification,
however great improvements in accuracies come at the
expense of large amounts of computational resources.
In this paper, we introduce LiteEval for resource ef-
ficient video recognition. LiteEval is a coarse-to-fine
framework that dynamically allocates computation on
a per-video basis, and can be deployed in both online
and offline settings. Operating by default on low-cost
features that are computed with images at a coarse
scale, LiteEval adaptively determines on-the-fly when
to read in more discriminative yet computationally ex-
pensive features. This is achieved by the interactions of
a coarse RNN and a fine RNN, together with a condi-
tional gating module that automatically learns when to
use more computation conditioned on incoming frames.
We conduct extensive experiments on three large-scale

This work was supported in part by National Natural Science
Foundation of China (#62032006).

Zuxuan Wu
E-mail: zxwu@fudan.edu.cn

Hengduo Li
E-mail: hdli@cs.umd.edu

Yingbin Zheng
E-mail: zyb@videt.cn

Caiming Xiong
E-mail: cxiong@salesforce.com

Yu-Gang Jiang (Corresponding author)
E-mail: ygj@fudan.edu.cn

Larry S. Davis
E-mail: lsd@cs.umd.edu
1Fudan University, Shanghai, China
2University of Maryland, College Park MD, USA
3Videt Lab., Shanghai, China
4Salesforce Research, CA, USA

video benchmarks, FCVID, ActivityNet and Kinetics,
and demonstrate, among other things, that LiteEval
offers impressive recognition performance while using
significantly less computation for both online and offline
settings.

Keywords Conditional computation · Video classifica-
tion · Efficient recognition

1 Introduction

Recent years have witnessed tremendous progress of
Convolutional Neural Networks (CNNs) in a multitude
of computer vision tasks like image classification (He
et al., 2015; Xie et al., 2017; Hu et al., 2018), object
detection (He et al., 2017; Ren et al., 2015), action
recognition (Wang et al., 2018a, 2016; Feichtenhofer
et al., 2019), etc. However, the stunning performance
of CNN models are accompanied by increased network
depth and model parameters, which limits their deploy-
ment in many real-world applications that are oftentimes
resource-constrained such as online image/video recog-
nition services, autonomous cars, navigation robots, etc.
Promising solutions to mitigate this issue include neural
network pruning/compression (Chen et al., 2015; Raste-
gari et al., 2016; Li et al., 2017) and compact/efficient ar-
chitecture design suitable for embedded devices (Howard
et al., 2017; Iandola et al., 2016; Feichtenhofer, 2020;
Tran et al., 2015). However, these approaches treat all
samples equally, and generate one-size-fits-all models
that allocate the same amount of computation regardless
of sample complexity.

While lightweight/compact networks usually achieve
good results when classifying the majority of samples,
much deeper and computationally expensive models, if

2 Wu et al.

not an ensemble of models, are required to achieve com-
petitive performance on challenging benchmarks like
ImageNet (Deng et al., 2009) and COCO (Lin et al.,
2014)—they are often better at recognizing corner cases
that lie in the tail of the data distribution (Liu et al.,
2019). It is worth pointing out the computational cost
of CNNs is also highly related to the input resolution of
the model besides the depth of the model. For instance,
when running inference with a ResNet-101 network on
spatially downsampled images (112× 112), 74% of com-
putation can be saved (measured by giga floating point
operations) with reasonable recognition results com-
pared to the standard setting where images with a size
of 224× 224 are used.

Inspired by these observations, in this paper, we ask
the following question: can we design a framework with
modules of different complexity operating on different
image scales and then can we learn to automatically
activate the desired module conditioned on input sam-
ples with an aim to save computation while offering
reliable recognition results? The intuition behind is that
low-cost modules are used by default to classify easy
samples (e.g., images with centered objects and front-
facing views) using coarse scale inputs, while powerful
yet computationally expensive modules are activated
only when necessary to examine finer details to cope
with hard samples (e.g., images with occlusion and clut-
tered background). The idea is conceptually similar to
human perception mechanisms—we pay more attention
to complex scenarios while for most objects we can
recognize them easily with a glance.

With this in mind, we explore the problem of adap-
tively allocating computational resources on a per-input
basis for resource efficient video recognition. The reasons
that we consider video recognition with constrained re-
sources are two-folds: (1) Video recognition is much more
computationally intensive compared to image recogni-
tion due to the additional temporal dimension in video
data. As a result, developing resource efficient video
recognition systems is critical, as computation relates
to energy consumption, which should be minimized to
be cost-effective and environmental-friendly. (2) There
are large intra-class and inter-class variations in video
data, and hence computational resources required are
expected to differ conditioned on video content. For
example, a highly confident prediction can be com-
puted by simply observing a single frame for videos that
contain relatively static objects (e.g., “panda” and “gi-
raffe”) and scenes (e.g., “forest” and “sea”). On the other
hand, for motion/action-intensive videos, more frames
are demanded to differentiate fine-grained categories
like “drinking beer” from “drinking tea”. In addition,
even for videos within the same category, computational

resources required to make correct predictions are differ-
ent. For instance, sports videos that are professionally
recored usually contain less camera motion compared
to user-generated videos produced by hand-held mobile
devices or ego-centric cameras.

In this paper, we introduce LiteEval, a coarse-to-
fine framework that dynamically allocates computation
conditioned on incoming video frames, suitable for both
online and offline video classification. LiteEval op-
erates on coarse information for low-cost evaluation
by default and takes in fine information that is com-
putationally expensive to obtain only when necessary.
More specifically, LiteEval consists of a coarse RNN, a
fine RNN and a conditional gating module. The coarse
RNN takes in features derived from downsampled image
frames (coarse information) with a lightweight CNN
model; the fine RNN, on the other hand, examines
incoming frames more carefully to obtain finer details
(fine information) with a more powerful CNN. The condi-
tional gating module dynamically decides the granularity
of information to use. Given a sequence of video frames,
LiteEval, at each time step, extracts coarse features
from the current downsampled video frame and updates
the hidden states of the coarse RNN to model temporal
information over time. The conditional gating module
then decides whether further examination is needed to
obtain detailed information of the current input. If it
chooses to use more computation, fine features are then
computed with the computationally expensive CNN and
fed into the fine RNN for temporal modeling; otherwise,
the coarse RNN and the fine RNN are synchronized such
that the fine RNN encompasses all information seen so
far to make predictions. Then, LiteEval analyzes the
next incoming frame. LiteEval processes video frames
in a recurrent and efficient manner and can be deployed
in both online and offline scenarios. Figure 1 gives an
overview of the framework.

We evaluate our approach on three large-scale video
datasets for generic video classification (FCVID (Jiang
et al., 2018)), “untrimmed” activity recognition (Activ-
ityNet (Heilbron et al., 2015)), and “trimmed” action
recognition (Kinetics (Kay et al., 2017)). We consider
video recognition under both online and offline settings.
We show that, for offline video recognition, LiteEval
offers accuracies that are on par with the strong and
popular uniform sampling strategy while requiring sig-
nificantly less computation, and it also achieves better
results than efficient video recognition approaches in
recent literatures (Yeung et al., 2016; Fan et al., 2018).
We also demonstrate LiteEval can be effectively de-
ployed for online video recognition to accommodate
different computational budgets. Furthermore, we show
that LiteEval is compatible with state-of-the-art video

A Coarse-to-Fine Framework for Resource Efficient Video Recognition 3
G

a
ti
n
g

G
a
ti
n
g

G
a
ti
n
g

G
a
ti
n
g

G
a
ti
n
g

G
a
ti
n
g

use fine feature

skip

sync sync sync sync

Fig. 1 An overview of the proposed framework. At each time step, coarse features are computed with a lightweight
CNN and are then used together with historical information to decide whether more careful examination for the current frame
is needed. If further inspection is required, fine features are computed as inputs to the fine RNN; otherwise the two RNNs are
synchronized. See texts for more details.

backbones and we provide qualitative evidence that fine
feature usage differs for samples in different categories
and within the same class.

A preliminary version of this paper appeared in (Wu
et al., 2019b). The current paper contains a thorough
review of recent literatures on efficient video analysis;
more detailed descriptions of the approach; more anal-
ysis on online video recognition; new experiments of
using different recurrent neural networks in addition to
LSTMs; new experiments with modern state-of-the-art
2D and 3D backbones, demonstrating that LiteEval
is a generic framework; additional experiments on Ki-
netics (Kay et al., 2017) and Breakfast (Kuehne et al.,
2014).

2 Related Work

Video Classification. Extensive study has been con-
ducted on designing effective and robust models for
video classification, where the typical design principles
to date focus on equipping deep neural networks for
2D tasks, e.g. image classification, with the ability for
temporal modeling across different video frames. One
line of research applies 2D image models directly to
multiple frames and then temporally aggregates frame-
level features with pooling (Simonyan and Zisserman,
2014; Wang et al., 2016; Feichtenhofer et al., 2016) and
recurrent networks (Ng et al., 2015; Donahue et al.,

2015; Li et al., 2016). Another direction expands 2D
models to 3D models by replacing 2D convolutions with
their 3D counterparts that jointly model temporal and
spatial semantics and applies 3D networks to stacked
frames (Tran et al., 2015; Kay et al., 2017; Tran et al.,
2018; Qiu et al., 2017; Feichtenhofer et al., 2019; Feicht-
enhofer, 2020). Inputs such as optical flow are also uti-
lized to provide explicit temporal information in existing
approaches (Simonyan and Zisserman, 2014; Wang et al.,
2016). Despite achieving superior classification perfor-
mance on standard benchmarks, current state-of-the-
art video classification models are extremely resource-
demanding mainly due to the computationally heavy
model architectures and a large number of uniformly
sampled input frames/snippets for all videos, which we
posit is an overkill for easy samples. Our approach aims
at dynamically allocating computational resources on a
per-input basis—lower-resolution inputs and lightweight
CNNs are utilized by default and finer information is
used only when necessary, aiming to save computational
resources while offering reliable classification accuracies.
Conditional Computation. The idea of conditional
computation has been widely explored in the image do-
main. Earlier methods like cascaded classifiers (Viola
and Jones, 2004) are proposed to save computation by
quickly rejecting easy negative candidates for face de-
tection. Many adaptive computation approaches have
also been developed in deep neural networks recently
by learning to switch decision branches with different

4 Wu et al.

computational cost, including skipping layers (Wang
et al., 2018b; Veit and Belongie, 2018; Wu et al., 2018b)
or selecting channels (Bejnordi et al., 2020; Lin et al.,
2017) in a large network dynamically, or performing
early exiting with auxiliary heads conditioned on in-
puts (Huang et al., 2018b; Bolukbasi et al., 2017). There
are also several recent approaches learning to choose dif-
ferent resolutions (Yang et al., 2020; Uzkent and Ermon,
2020) or select salient regions out of the entire image as
input for faster inference (Najibi et al., 2019; Gao et al.,
2018). While related to these approaches, our method
focuses on the task of video classification and learns
to dynamically determine whether to use computation-
ally expensive components like high-resolution inputs
and powerful backbone architectures in a network on a
per-input basis.
Efficient Video Analysis. While most work focuses
on improving video classification performance by design-
ing robust models, some recent attempts have also been
made for efficient video analysis (Zhang et al., 2016; Wu
et al., 2018a; Fan et al., 2018; Yeung et al., 2016; Wu
et al., 2019c; Korbar et al., 2019; Zolfaghari et al., 2018;
Tran et al., 2018; Feichtenhofer, 2020). Several light-
weight modules for efficient temporal modeling have
been introduced such as a relational module in (Zhou
et al., 2018) and a temporal shift module in (Lin et al.,
2019). Recent advances in efficient 2D CNNs such as
group convolutions (Howard et al., 2017; Sandler et al.,
2018) are also explored in the video domain (Tran et al.,
2018; Chen et al., 2018; Tran et al., 2019). More re-
cently, some lightweight 3D CNNs are proposed to save
computation (Tran et al., 2018, 2019; Feichtenhofer,
2020). However, these approaches all use a fixed set of
parameters regardless of the complexity of input videos.
In contrast, LiteEval is a general dynamic inference
framework for efficient video classification, leveraging
RNNs to aggregate temporal information and making
feature usage decisions over time. Our method is by de-
sign complementary to 3D CNNs, as the input features
can be easily replaced by the snippet-level feature from
3D CNNs, as will be shown in our experiments.

Apart from designing efficient network architectures,
adaptive computation is also explored in some existing
work. (Yeung et al., 2016) utilize policy gradient meth-
ods to train an agent that selects informative frames
and predicts when to stop inference for action detec-
tion. A fast forward agent is introduced by Fan et al.
that decides how many frames to skip at a certain time
step (Fan et al., 2018). While being conceptually sim-
ilar, i.e. targeting at skipping redundant frames, our
framework is easier to train than policy search meth-
ods (Fan et al., 2018; Yeung et al., 2016) as it is fully
differentiable. Moreover, our framework is suitable for

not only offline inference but also online settings taking
video streams as inputs, since the framework does not
require access to future frames.

3 Approach

LiteEval consists of a coarse RNN and a fine RNN
that work cooperatively, operating on visual information
at different scales. It also contains a conditional gating
module which learns to switch between different feature
scales conditioned on inputs. More specifically, taking in
a sequence of video frames, LiteEval aims to learn, at
each time step, whether to obtain finer details by com-
puting discriminative features on high resolution inputs.
The decision is made based on historical information
and a quick glance of the current frame at a coarse
scale. This results in a model that operates on low-cost
features by default and computes high-cost features only
when necessary to take in fine details. The framework is
optimized in an end-to-end manner to reduce the overall
computational cost while offering reliable recognition
results. Below, we elaborate different components of
the framework, and introduce the optimization for the
framework.

3.1 A Coarse-to-Fine Framework

Coarse RNN. The coarse RNN takes in low-cost fea-
tures that are computed at a coarse image scale us-
ing a lightweight CNN model (see Sec. 4.1 for details),
glimpsing over incoming video frames efficiently for an
overview of the video. More specifically, at t-th time
step, the lightweight CNN model first computes features
vct on downsampled video frames. The coarse features
are then used in combination with hidden states from
the previous time step hct−1 as inputs to the coarse RNN,
outputting hidden states of the current step hct :

hct = cRNN(vct , h
c
t−1). (1)

It is worth pointing out the RNN here can be instanti-
ated with different types of recurrent networks such as
LSTMs (Hochreiter and Schmidhuber, 1997), GRU (Cho
et al., 2014) and SRU (Lei et al., 2017), as will be shown
in the experiments. We mainly use LSTMs in our paper,
in which hct additionally contains cell states. Without
loss of generality, we use hct to denote all hidden states.
Conditional gating module. The coarse RNN ob-
serves incoming video frames quickly without consuming
too much computation, however this is not sufficient as
important details that are needed to differentiate subtle
actions are neglected. For instance, finer details are re-
quired to separate fine-grained categories like “drinking

A Coarse-to-Fine Framework for Resource Efficient Video Recognition 5

tea” and “drinking coffee”. To remedy this, LiteEval
uses a conditional gating module to dynamically de-
cide whether more discriminative information is needed
from the current video frame. In particular, the gating
module contains a one-layer MLP that computes the
unnormalized probability to extract fine features at a
high resolution with a more powerful CNN model:

bt ∈ R2 = W>
g [vct ,h

f
t−1]. (2)

Here Wg denotes the weight matrix for the conditional
gate, hft−1 denotes the hidden states for the fine RNN
(as will be discussed below) from the previous time step,
and [,] represents the concatenation of features. Since
the gating module aims to learn whether to compute
features at a finer scale based on bt, this requires making
binary decisions, which is non-differentiable and thus
hard to optimize in supervised frameworks. Here, we
define a Bernoulli random variable Bt to make decisions
through sampling from bt. We will introduce how to
learn such a parameterized gating function in detail in
Section 3.2.
Fine RNN. When the gating module decides to exam-
ine the current video frame more carefully (i.e., Bt = 1),
we then compute more discriminative features with a
computationally expensive CNN using high resolution
inputs. The features are further input to the fine RNN
for temporal modeling. More specifically, fine and coarse
features of the current time step, i.e., vft and vct re-
spectively, are concatenated with previous hidden states
hft−1 as inputs to the fine RNN to produce current
hidden states:

h̃ft =fRNN([vct ,v
f
t], h

f
t−1) (3)

hft =(1−Bt)hft−1 +Bth̃
f
t . (4)

If the gating module decides to skip high resolution
inputs (i.e., Bt = 0), LiteEval reuses hidden states
from the previous time step to save computation.
Synchronizing the cRNN with the fRNN. The coarse
CNN takes in low-cost features for each incoming video
frame, and thus it contains all available information
seen so far. On the other hand, the fine RNN only con-
tains knowledge from high resolution frames determined
by the conditional module. One can consider the fRNN
stores fine-grained details while the cRNN provides con-
text information from all seen frames. For improved
recognition performance, we wish to use information
seen in both RNN models. Since these two RNN models
are asynchronous (the coarse RNN runs faster and is
always ahead of the fine RNN, observing more frames),
directly concatenating their hidden states is not feasible.

Instead, we simply synchronize them by a copy opera-
tion. More specifically, at the t-th step, when the gating
module opts out of the computation of fine features (i.e.,
Bt = 0 in Equation 4), instead of using hft−1 directly,
we synchronize the hidden states by copying:

hft = [hct ,ht−1(D
c + 1 : Df)], if Bt = 0, (5)

where Dc and Dfdenote the dimension of hc and hf ,
respectively (we assume the Dc < Df). As a result, the
hidden states in the fine RNN contains all information
seen so far and can be readily used to emit predictions
at any time:

pt = softmax(W>
p hft), (6)

where pt represents the prediction of the t-th step and
Wp is the weights for the classifier.

3.2 Optimization

We denote Θ = {ΘcRNN, ΘfRNN, Θg} as all trainable pa-
rameters in the framework, where ΘcRNN and ΘfRNN are
the parameters in the coarse and fine RNNs, respec-
tively and Θg are parameters for the conditional gating
module 1. During training, LiteEval uses predictions
from the last time step T as the video-level predictions,
and it is trained to optimize the following loss function:

minimize
Θ

EBt∼Bernoulli(bt;Θg)
(x,y)∼Dtrain

[− y log(pT (x;Θ)) (7)

+λ(
1

T

T∑
t=1

Bt − γ)2],

where x and y represent a video and its correspond-
ing one-hot label vector sampled from the training set
Dtrain. The first term is a standard cross-entropy loss
for classification and the second term constrains the
usage of fine features to a predefined target γ, where
1
T

∑T
t=1Bt is the fraction of the number of times fine fea-

tures are used over the entire time horizon. In addition,
λ controls the trade-off between recognition accuracy
and computational cost.

However, directly solving Equation 7 is challenging
since determining whether to use fine features from
high resolution inputs requires making binary decisions
through sampling from a Bernoulli distribution parame-
terized by Θg. One approach to address this is to solve
the optimization in Equation 7 in a reinforcement learn-
ing framework—defining states and actions and then
associating each action taken with a carefully designed
reward. The reinforcement learning framework can be
trained with policy gradient methods (Sutton and Barto,

1 We absorb the weights of the classifier Wp into ΘfRNN.

6 Wu et al.

Algorithm 1: Algorithm of LiteEval.
Input: A video stream with T time steps.

1 Initialize the weights of cRNN, fRNN and the gating
module G: ΘcRNN, ΘfRNN, Θg.

2 for t← 0 to T do
3 Compute coarse feature vc

t

4 hc
t = cRNN(vc

t , h
c
t−1)

5 Compute gating probabilities bt
6 if training then
7 Bt ∼ Gumbel-Softmax(bt)
8 else
9 Bt = argmax(bt)

10 end
11 Compute fine feature vf

t when Bt = 1
12 Synchronize two RNNs when Bt = 0

13 pt = softmax(W>p hf
t)

14 end

1998) to learn binary decisions. However, reinforcement
learning methods are generally difficult to train due to
large variance in sampling (Sutton and Barto, 1998).
In this work, we leverage a Gumbel-Max trick to make
the framework fully differentiable. In particular, given
a discrete categorical variable B̂ with class probabili-
ties P (B̂ = k) ∝ bk, where bk ∈ (0,∞) and k ≤ K

(K represents the total number of categories; K = 2
in LiteEval), the Gumbel-Max (Hazan and Jaakkola,
2012; Maddison et al., 2017) trick suggests the sampling
from a categorical distribution can be done through:

B̂ = argmax
k

(log bk +Gk). (8)

Here Gk = −log (−log (Uk)) is the Gumbel noise
and Uk denote i.i.d samples drawn from Uniform (0, 1).
While the argmax operation in Equation 8 is not differ-
entiable, we can use softmax as a continuous relaxation
of argmax (Maddison et al., 2017; Jang et al., 2017):

Bi =
exp((log bi +Gi)/τ)∑K
j=1 exp((log bj +Gj)/τ)

for i = 1, ..,K (9)

where τ is a temperature hyper-parameter governing
the discreteness in the output vector B. Consider the
extreme case when τ → 0, Equation 9 generates the
same samples as Equation 8.

At each time step, LiteEval samples from a
Gumbel-Softmax distribution parameterized by the
weights of the conditional gating module Θg, enabling
the learning of binary decisions in a fully differentiable
manner. As suggested in (Jang et al., 2017), we also
decrease the temperature from a high value to encour-
age exploration to a smaller positive value. Algorithm 1
summarizes the overall algorithm of our framework.

4 Experiments

4.1 Experimental Setup

Datasets and evaluation metrics. We evaluate
our framework on three large-scale video classification
benchmarks, i.e., FCVID, ActivityNet and Kinet-
ics. More specifically, FCVID (Fudan-Columbia Video
Dataset) (Jiang et al., 2018) consists of 91, 223 YouTube
videos (with an average duration of 167 seconds) an-
notated into 239 classes, covering popular topics like
“birthday party”, “marriage proposal”, “making pizza”,
etc. The dataset is divided into a training set with 45, 611

videos and a testing set with 45, 612 videos. While
FCVID contains generic video categories, videos in Ac-
tivityNet (Heilbron et al., 2015) are action/activity-
focused like “drinking beer”, “drinking coffee”, “fencing”,
etc. ActivityNet contains 20K videos (with an aver-
age duration of 117 seconds) belonging to 200 classes.
In our evaluation, we adopt the v1.3 split which di-
vides the dataset into a training set of 10, 024 videos,
a validation set of 4, 926 videos and a testing set of
5, 044 videos. Since labels on the testing set are not
publicly available, we report the performance on the
validation set. We use FCVID and ActivityNet since
videos in both datasets are untrimmed and are rela-
tively long, for which we believe efficient recognition
is very important. To demonstrate our framework is
also applicable to “trimmed” motion-intensive videos,
we additionally evaluate LiteEval on Kinetics (Kay
et al., 2017). Kinetics consists of “trimmed” YouTube
clips with an average duration of 10 seconds belonging
to 400 categories. Following (Feichtenhofer et al., 2019),
we use ∼240K videos for training and ∼20K videos for
evaluation.

For offline prediction on ActivityNet and FCVID,
we use mean average precision (mAP) to measure the
performance following (Heilbron et al., 2015; Jiang et al.,
2018). On Kinetics, we report top-1 accuracy follow-
ing (Kay et al., 2017). For online recognition, we report
top-1 accuracy since mAP is a ranking-based metric
based on the entire test set and is not suitable online
recognition (we do observe similar trends with both
metrics). The computational cost is measured by giga
floating point operations (GFLOPs), which is a hard-
ware independent metric.
Implementation details. To compute coarse fea-
tures, we use a lightweight MobileNetv2 (Sandler et al.,
2018) model on spatially downsampled inputs (i.e.,
112× 112). The MobileNetv2 model offers a top-1 accu-
racy of 52.3% on ImageNet when images are resized to
112× 112. For fine feature computation, we use a reso-
lution of 224× 224 for input frames to extract features.

A Coarse-to-Fine Framework for Resource Efficient Video Recognition 7

We mainly experiment with a ResNet-101 (He et al.,
2016) model and compute features from its penultimate
layer. The model is pretrained on ImageNet with a top-1
accuracy of 77.4% and it is further finetuned on target
datasets for improved performance. More spefically, for
both ResNet-101 and MobileNet, we use pretrained mod-
els from ImageNet and extract video frames from all the
datasets. Then, these CNN backbones are finedtuned on
target datasets as image classifcation tasks. To demon-
strate that LiteEval is a generic framework and can be
used in combination with state-of-the-art video recogni-
tion models, we additionally use two more powerful back-
bones for fine feature computations: (1) a SlowFast-8×8
network with a backbone of ResNet-50 (Feichtenhofer
et al., 2019), whose inputs are 8 stacked RGB frames
sampled uniformly from 64 frames with a stride of 8.
It obtains a top-1 accuracy of 77.0% on Kinetics (Kay
et al., 2017) and further finetuned on target datasets;
(2) a Dual Path Network (DPN-107) model (Chen et al.,
2017), which achieves a top-1 accuracy 80.3% on Im-
ageNet, and is finetuned with temporal segment net-
works (Wang et al., 2016) for temporal modeling.

Our implementation is based on PyTorch on four
NVIDIA V100 GPUs. We use Adam (Yao et al., 2012)
as the optimizer and we fix the learning rate to be
1e− 4 and set λ to 2. We use a batch of 128, 256 and
512 for ActivityNet, FCVID and Kinetics, respec-
tively. We mainly instantiate RNNs with LSTMs, and
also compare with different types of recurrent networks.
On ActivityNet, the coarse RNN and the fine RNN
respectively consists of 64 and 512 hidden units. On
FCVID and Kinetics, there are 2, 048 hidden units
in the fine RNN; the coarse RNN contains 512 and
1, 024 units, respectively. The computational cost for
MobileNetv2, ResNet-101, DPN-107, and SlowFast-8×8
is 0.08 GFLOPs, 7.82 GFLOPs, 18.34 GFLOPs, and
65.71 GFLOPs for a single frame 2, respectively. During
testing, we sample videos at 1fps for all datasets.

4.2 Main Results

In this section, we first report results of LiteEval us-
ing a standard ResNet-101 as the backbone for fine
feature computation, offering decent recognition accu-
racy with moderate computational cost. We then ex-
periment with state-of-the-art video recognition models
with better recognition accuracies but are more compute-
demanding.

2 For SlowFast, a frame indicates a snippet with 8 frames.

4.2.1 Fine Feature Computation with a ResNet-101

Offline recognition. We first evaluate LiteEval for
offline prediction and compare with the following alterna-
tive methods: (1) Uniform, which generates prediction
scores using the large CNN for 25 uniformly sampled
frames and then performs an average-pooling to obtain
video-level classification scores; (2) LSTM, which takes
in features from the large CNN and produces classifica-
tion scores using hidden states from the last time step of
an LSTM; (3) Uniform+CF, which combines predic-
tion scores from the coarse CNN and the fine CNN model
for each frame and then averages 25 frames for predic-
tion; (4) LSTM+CF, which uses concatenated coarse
and fine features as inputs to an LSTM to produce pre-
dictions; (5) FrameGlimpse (Yeung et al., 2016), which
uses an agent trained with REINFORCE (Sutton and
Barto, 1998) to choose a small number of frames for effi-
cient recognition; (6) FastForward (Fan et al., 2018),
which trains an agent to learn how many steps to jump
forward at each time step with REINFORCE (Sutton
and Barto, 1998); (7) LiteEval-RL, which is a variant
of LiteEval using REINFORCE to learn binary deci-
sions. It is worth pointing out the uniform baseline is
very strong and has been adopted by almost all CNN-
based approaches due to its simplicity and effectiveness.

Table 1 Results of different approaches for offline
video recognition. We compare LiteEval with alternative
methods on FCVID and ActivityNet.

FCVID ActivityNet

Method mAP GFLOPs mAP GFLOPs

Uniform 80.0% 195.5 70.0% 195.5
LSTM 79.8% 196.0 70.8% 195.8

Uniform+CF 80.1% 197.5 70.1% 197.5
LSTM+CF 80.1% 198.0 71.5% 197.8

FrameGlimpse 71.2% 29.9 60.2% 32.9
FastForward 67.6% 66.2 54.7% 17.2

LiteEval-RL 74.2% 245.9 65.2% 269.3
LiteEval 80.0% 94.3 72.7% 95.1

The results and comparisons of different methods are
summarized in Table 1. Compared to the uniform base-
line, we observe that LiteEval achieves 51.8% (94.3
vs. 195.5) and 51.3% (95.1 vs. 195.5) computational
savings measured by GFLOPs while offering similar or
better accuracies on FCVID and ActivityNet, re-
spectively. This confirms that LiteEval is able to save
computation by using low-cost features by default and
computing high-cost features as infrequently as possible.
We also see that LiteEval uses more computational
resources on ActivityNet than on FCVID, which

8 Wu et al.

0 40 80 120 160 200
GFLOPs

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

T
op

-1
A

cc
ur

ac
y

(%
)

Uniform-K

SEQ-K

LiteEval

(a) FCVID

0 40 80 120 160 200
GFLOPs

20.0

30.0

40.0

50.0

60.0

70.0

T
op

-1
A

cc
ur

ac
y

(%
)

Uniform-K

SEQ-K

LiteEval

(b) ActivityNet

20.0

50.0

80.0

110.0

G
F

L
O

P
s

0.2 0.4 0.6 0.8 1.0
Percent of videos watched

60.0

65.0

70.0

75.0

80.0

T
op

-1
A

cc
ur

ac
y

(%
)

Uniform-K

LiteEval

(a) FCVID

25.0

55.0

85.0

115.0

G
F

L
O

P
s

0.2 0.4 0.6 0.8 1.0
Percent of videos watched

40.0

47.0

54.0

61.0

68.0

T
op

-1
A

cc
ur

ac
y

(%
)

Uniform-K

LiteEval

(b) ActivityNet

Fig. 2 Computational cost vs. recognition accuracy
on FCVID and ActivityNet. Results different methods
for online prediction.

Fig. 3 Percentage of videos watched vs. the corre-
sponding computational cost and recognition accu-
racy on FCVID and ActivityNet for online recognition.

results from the fact that classes in ActivityNet are
action-focused whereas FCVID also includes categories
that are relatively static with fewer motion. In addi-
tion, combining coarse features to fine feature offers
slight gains on both datasets. Further, in contrast to
FrameGlimpse and FastForward that also learn
frame usage policies, LiteEval offers significantly bet-
ter accuracies although it requires more computation.
This is because FrameGlimpse and FastForward
have access to future frames (i.e., jumping to a future
time step). Instead, LiteEval decides whether to use
fine features for the current frame, allowing the frame-
work to be used not only for offline prediction but also
in online settings, as will be discussed below. We also
compare with LiteEval-RL, which instead of using
Gumbel-Softmax learns binary decisions with reinforce-
ment learning. LiteEval achieves better results than
LiteEval-RL in terms of both accuracy and computa-
tional cost, and it is also easier to optimize.
Online recognition with varying computational
budgets. Offline recognition asssumes the whole video
is available when making decisions so that multiple snip-
pets/frames can be sampled from the entire video to
emit predictions. This is not applicable in online scene-
rios where frames arrrive sequentially, i.e., the model
can only use information seen so far. After LiteEval
is trained, it can be readily used for online video recog-
nition. Since the most computationally expensive oper-
ation in the framework is to compute fine features, we
vary the number of times fine features are computed (rep-
resented by K) to accommodate different computational
budgets. This forces the model to emit predictions after
fine features have been read in for the K-th time, which
is conceptually similar to any time prediction (Huang
et al., 2018a) that assigns a budget to each testing sam-
ple. We report the top-1 recognition accuracy and the
mean computational cost on the dataset. We compare
with: (1) Uniform-K, which performs a mean-pool-

ing over predictions from K frames that are sampled
uniformly from a total of K ′ frames as the video-level
scores. Here, K ′ is the locaiton where LiteEval emits
classification scores after having read in fine features for
the K-th time. (2) Seq-K, which averages scores of K
consecutive frames.

Figure 2 summarizes the results. From the figure, we
see that LiteEval achieves the best trade-off between
computational cost and recognition accuracies on both
FCVID and ActivityNet for online video recognition.
Note that although Uniform-K is a strong baseline,
it is not feasible in the online setting since there is no
information about the length of the incoming video and
the frame rate. In addition, LiteEval achieves better
results than the straightforward frame-by-frame compu-
tation strategy Seq-K by clear margins. This highlights
the effectiveness when LiteEval is deployed online. We
also show the computation cost and recognition accuracy
with respect to the percentage of videos that are seen in
Figure 3. We see that LiteEval achieves better accura-
cies than the Uniform-K baseline while requiring less
computation on both datasets. We also observe more
computational resources are used on ActivityNet than
FCVID, which is consistent with observations in offline
settings.
Learned policies for fine feature usage. We pro-
vide analysis on the policies derived by the conditional
gating module that dynamically determines whether to
compute fine features or not. We visualize, in Figure 4,
the distribution of fine feature usage for sampled video
classes from FCVID. We observe that the number of
times fine features are read in not only varies across
different classes but also within the same category. As
fine feature computation is a direct indicator of the
overall computation, this confirms our hypothesis that
computation needed to make correct predictions is dif-
ferent conditioned on input samples. Figure 5 further
demonstrates frames selected by LiteEval to compute

A Coarse-to-Fine Framework for Resource Efficient Video Recognition 9

Table 2 Results of LiteEval using different backbones on FCVID and ActivityNet. Top: offline recognition.
Bottom: online recognition.

FCVID ActivityNet

mAP GFLOPs # Fine Feat mAP GFLOPs # Fine Feat

O
ffl
in
e

DPN-10 81.6% 183.40 10.00± 0.00 82.3% 183.40 10.00± 0.00
DPN-25 82.1% 458.50 25.00± 0.00 83.0% 458.50 25.00± 0.00
LiteEval 83.3% 157.90 8.00± 5.90 84.0% 193.82 9.96± 5.20

SlowFast-10 83.0% 657.10 10.00± 0.00 84.2% 657.10 10.00± 0.00
SlowFast-25 83.7% 1642.75 25.00± 0.00 85.0% 1642.75 25.00± 0.00
LiteEval 83.9% 430.98 6.39± 3.04 85.4% 546.76 8.15± 5.42

O
nl
in
e

DPN 74.8% 73.36 4.00± 0.00 59.5% 73.36 4.00± 0.00
LiteEval 76.5% 57.78 2.97± 0.18 65.7% 55.96 2.99± 0.08

DPN 78.5% 110.04 6.00± 0.00 71.8% 110.04 6.00± 0.00
LiteEval 79.4% 90.62 4.64± 0.77 71.9% 92.12 4.91± 0.37

DPN 80.6% 165.06 9.00± 0.00 80.2% 165.06 9.00± 0.00
LiteEval 81.9% 131.56 6.75± 2.51 80.2% 153.39 8.10± 2.10

ch
or

us
go

ril
la

bi
llia

rd
ta

bl
eT

en
ni

s
m

ar
ch

in
gB

an
d

so
lv

in
gM

ag
icC

ub
e

ta
ek

wo
nd

o
el

ep
ha

nt
na

ilA
rtD

es
ig

n
pa

nd
a

gr
ad

ua
tio

n
ca

t
tu

rtl
e

bo
xi

ng
vi

ol
in

Pe
rfo

rm
an

ce
bi

rth
da

y
be

at
bo

x
ha

irs
ty

le
De

sig
n

wa
sh

in
gD

ish
es

di
nn

er
At

Ho
m

e
m

ak
in

gM
ix

ed
Dr

in
ks

ba
rb

el
lW

or
ko

ut
ki

ck
in

gS
hu

ttl
ec

oc
k

bo
wl

in
g

fly
in

gK
ite

s
m

ak
in

gC
ak

e
fis

hi
ng

m
ak

in
gR

in
gs

m
ak

in
gP

ho
ne

Ca
se

s
di

ni
ng

At
Re

st
au

ra
nt

m
ak

in
gH

ot
do

g
m

ak
in

gI
ce

cr
ea

m
m

ak
in

gC
oo

ki
es

m
ak

in
gE

gg
Ta

rts
m

ar
ria

ge
Pr

op
os

al

0

12

24

36

48

Fi
ne

 fe
at

ur
e

us
ag

e

Fig. 4 The distribution of fine feature usage for sam-
pled classes on FCVID. In addition to quartiles and me-
dians, mean usage, denoted as yellow dots, is also presented.

fine features of certain videos. We see that redundant
frames without additional information are skipped and
those selected frames contain salient information for
classifying the class of interest.

4.2.2 Results on State-of-the-Art Video Models

To demonstrate that LiteEval is a generic framework,
where different backbones can be readily used. We use (1)
a DPN-107 model (Chen et al., 2017) trained with tem-
poral segment networks (Wang et al., 2016) for temporal
modeling. During training, it learns to fuse predictions
from uniformly sampled frames with a Softmax function;
during inference, the DPN-107 model is used similarly
as vanilla 2D networks; (2) a SlowFast-8×8 network (Fe-
ichtenhofer et al., 2019), which samples 8 frames from
a total of 64 frames with a stride of 8 as inputs to 3D
CNNs with two pathways. We evaluate both models
for offline video prediction; we only evaluate the DPN
model for online video prediction, since the SlowFast

network takes in stacked frames as inputs that requires
a delicate caching design to store frames.

The results are summarized in Table 2. We can
see that for offline predictions, LiteEval offers similar
or better performance compared to their counterparts
requiring less computation for both backbones. More
specifically, on FCVID, using the DPN-107 as the back-
bone, LiteEval offers an mAP of 83.3% which is better
than averaging 25 frames by 1.2%, requiring 65% less
computation. We observe similar trends with the Slow-
Fast backbone. In addition, similar observations can
be made on ActivityNet. For online predictions, we
can also see that LiteEval is also better than the
uniform baseline with different computational budgets.
This confirms that LiteEval is compatible with mod-
ern powerful architectures for both online and offline
video recognition.

Fine feat§ 2D/3D mAP

IDT (Wang and Schmid, 2013) – – 68.7%
C3D (Tran et al., 2015) 10×16 3D 67.7%
P3D (Qiu et al., 2016) 20×16 3D 78.9%
RRA (Zhu et al., 2018) * 2D 83.4%
MARL (Wu et al., 2019a) 25×1 2D 83.8%

LiteEval (DPN) 9.96 ×1 2D 84.0%
LiteEval (SlowFast) 8.15× 8 3D 85.4%

Table 3 State-of-the-art results with different archi-
tectures on ActivityNet. *RRA takes in all frames de-
coded at 4fps; § A×B, represents uniformly sampled A snippets
for each video, and there are B frames in each snippet.

Comparisons with state-of-the-art methods on
ActivityNet. We now compare with state-of-the-
art approaches with powerful backbones for video recog-
nition on ActivityNet. The results are summarized in

10 Wu et al.

Marriage Proposal

Making Salad

Chorus Accordion Performance

Fig. 5 Frame selected (indicated by green borders) by LiteEval of sampled videos to compute fine features
in FCVID.

Table 3. We observe that LiteEval achieves competitive
performance compared to state-of-the-art models.
Results on Kinetics with SlowFast. So far we
evaluate LiteEval on ActivityNet and FCVID, both
of which contain “untrimmed” videos. We also demon-
strate that our approach can be used for “trimmed”
videos. We report our results on the Kinetics dataset
using the SlowFast backbone. During inference, we use
a single crop for evaluation and the results are presented
in Table 4. We observe that LiteEval achieves similar
top-1 accuracy but requires less computation compared
to the uniform baseline.

Table 4 Comparisons of different approaches on Ki-
netics. Here, we use a single center crop for inference.

Fine feat GFLOPs Top-1 Acc.

SlowFast 3.00± 0.00 197.10± 0.00 74.3%
SlowFast 5.00± 0.00 328.50± 0.00 74.9%
SlowFast 10.00± 0.00 657.00± 0.00 75.2%

LiteEval 4.16± 2.20 275.91± 144.10 75.0%

Results on Breakfast with Slowfast. We also
experimented on the Breakfast dataset (Kuehne et al.,
2014) to demonstrate that our apporach is applicable to
long videos where long temporal context information is
important. The Breakfast dataset (Kuehne et al., 2014)
contains 10 human activties about breakfast prepara-
tion. There are 1, 989 videos in the dataset, collected by
52 persons performing actions in 18 different kitchens.
The average length of each video is about 140 seconds.
Activities in this dataset are complicated due to large
intra-class variations since they contain very similar
sub-actions. We adopted the “s1” split to evaluate our

approach with a SlowFast model. The results are sum-
marized in Table 5. We can see that LiteEval achieves
better performance with fewer computational resources
required. This verifies that our approach is general and
can be used to model different types of videos. Note
that compared to Kinetics, we observe fewer computa-
tional savings since the breakfast dataset requires more
temporal information.

Table 5 Comparisons of different approaches on
Breakfast. Here, we use a single center crop for inference.

Fine feat GFLOPs Top-1 Acc.

SlowFast 3.00± 0.00 197.10± 0.00 60.6%
SlowFast 8.00± 0.00 525.60± 0.00 66.2%
SlowFast 10.00± 0.00 657.00± 0.00 68.3%

LiteEval 7.35± 0.06 497.80± 390.10 68.3%

4.3 Discussion

We now provide ablation studies and discussion to justify
design choices of different components in the framework.
Different types of recurrent networks. We
mainly use LSTMs as an “agent” not only to make
classification predictions but also make sequential gat-
ing decisions. We also experiment with two types of
recurrent networks, i.e., GRU (Cho et al., 2014) and
SRU (Lei et al., 2017). We see that SRU and LSTMs
are clearly better than GRU, since the capacity of GRU
is limited without the cell states. SRU offers better
accuracies on FCVID but requires more computation.

A Coarse-to-Fine Framework for Resource Efficient Video Recognition 11

Table 6 Results of different types of recurrent net-
works on ActivityNet.

DPN SlowFast

RNN mAP # Fine feat mAP # Fine feat

GRU 67.9% 8.78± 16.35 73.0% 9.44± 16.20
SRU 85.0% 12.48± 4.24 84.5% 10.19± 3.82

LSTM 84.0% 9.96± 5.20 85.4% 8.15± 5.42

Fine feature usage. We show, in Table 7, the results
of LiteEval when trained with different γ, which con-
trols the fine feature usage in the framework. We see
that using a γ of 0.05 achieves the best trade-off be-
tween computational savings and accuracies. When an
extremely small γ (e.g., 0.01) is set, the results are worse,
since it forces the model to compute fine features as
infrequently as possible to save computation and could
possibly overlook important details. Note that decent
results are achieved with smaller γ values (i.e., less or
equal than 0.1), which suggests video frames are highly
redundant.

Table 7 Results of different γ in LiteEval on
FCVID.

γ mAP GFLOPs

0.01 78.8% 75.4
0.03 79.7% 82.1
0.10 80.1% 139.0

0.05 80.0% 94.3

The synchronization of the fine RNN with the
coarse RNN. We demonstrate the effectiveness of
synchronizing the coarse RNN with the fine RNN. We
see, from Table 8 that, without updating the hidden
states of the fRNN with those of the cRNN, the perfor-
mance degrades to 65.7%. This verifies that synchro-
nization by transferring information from the cRNN to
fRNN is important as it provides information from all
visual information seen so far.

Table 8 The effectiveness of syncing LSTMs on
FCVID.

Method mAP

w/o. sync 65.7%
LiteEval 80.0%

The number of hidden units in the RNNs. We
also investigate the impact of the number of hidden
units in the coarse RNN and summarize the results in

Table 9. We observe that the performance is worse when
using a small LSTM with fewer hidden units due to lim-
ited capacity. As mentioned earlier, the most expensive
operation in the framework is to extract features from
video frames with CNN models, while LSTMs are much
more computationally efficient—it only requires 0.06%
of computation compared to the extraction of features
with a ResNet-101 model. For the fine RNN, we found
that using a size of 2, 048 offers the best results.

Table 9 Results of different sizes of LSTMs on
FCVID.

The number of units in cRNN mAP

64 76.9%
128 77.3%
256 78.3%

512 80.0%

Runtime. We report the runtime of LiteEval and
compare with LSTM, SlowFast and DPN-10. The
results are summarized in Table 10. We use a batch size
of 16 and then measure runtime by seconds per video on
a server with 2 Intel(R) Xeon(R) E5-2658 v4 2.30GHz
CPUs and 128G memory using a single NVIDIA TITAN
X GPU. We can see that LiteEval is faster compared
to alternative approaches.

Method GFLOPs Runtime mAP(seconds/video)

DPN-10 183.4 0.058 81.6

SlowFast-10 657.1 0.047 83.0
LSTM 657.3 0.061 83.1

LiteEval 430.98 0.041 83.9

Table 10 Comparisons between LiteEval with
SlowFast-10, DPN-10 and LSTM in terms of mAP,
GFLOPs and runtime on FCVID.

5 Conclusion

We introduced LiteEval, a simple yet effective frame-
work for resource-efficient video prediction in both online
and offline settings. LiteEval is a conditional compu-
tation framework that consists of a coarse RNN and
a fine RNN working cooperatively, as well as a gating
module. In particular, LiteEval uses low-cost features
computed at a coarse scale by default and adaptively
determines whether to compute more discriminative fea-
tures using high resolution inputs to obtain more details.
This is achieved by a gating module that can be learned

12 Wu et al.

in a differentiable manner with Gumbel-softmax. The
coarse RNN and the fine RNN are also synchronized
such that the fine RNN always contain information seen
so far and thus can be readily used to make predic-
tions. We conduct extensive experiments on FCVID,
ActivityNet and Kinetics for both online and offline
video recognition. The results demonstrate the effec-
tiveness of the proposed approach. For future research,
we can further prune backbone networks (Wang et al.,
2018b; He et al., 2018; Dong and Yang, 2019) to save
computation and explore Human Machine Interaction
applications (Molchanov et al., 2015; Köpüklü et al.,
2019).

References

Bejnordi BE, Blankevoort T, Welling M (2020) Batch-
shaping for learning conditional channel gated net-
works. In: ICLR 4

Bolukbasi T, Wang J, Dekel O, Saligrama V (2017)
Adaptive neural networks for fast test-time prediction.
In: ICML 4

Chen W, Wilson J, Tyree S, Weinberger K, Chen Y
(2015) Compressing neural networks with the hashing
trick. In: ICML 1

Chen Y, Li J, Xiao H, Jin X, Yan S, Feng J (2017) Dual
path networks. In: NIPS 7, 9

Chen Y, Kalantidis Y, Li J, Yan S, Feng J (2018) Multi-
fiber networks for video recognition. In: ECCV 4

Cho K, Van Merriënboer B, Bahdanau D, Bengio Y
(2014) On the properties of neural machine trans-
lation: Encoder-decoder approaches. arXiv preprint
arXiv:14091259 4, 10

Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009)
Imagenet: A large-scale hierarchical image database.
In: CVPR 2

Donahue J, Hendricks LA, Guadarrama S, Rohrbach M,
Venugopalan S, Saenko K, Darrell T (2015) Long-term
recurrent convolutional networks for visual recognition
and description. In: CVPR 3

Dong X, Yang Y (2019) Network pruning via trans-
formable architecture search. In: NeurIPS 12

Fan H, Xu Z, Zhu L, Yan C, Ge J, Yang Y (2018)
Watching a small portion could be as good as watching
all: Towards efficient video classification. In: IJCAI,
DOI 10.24963/ijcai.2018/98 2, 4, 7

Feichtenhofer C (2020) X3d: Expanding architectures
for efficient video recognition. In: CVPR 1, 3, 4

Feichtenhofer C, Pinz A, Zisserman A (2016) Convo-
lutional two-stream network fusion for video action
recognition. In: CVPR 3

Feichtenhofer C, Fan H, Malik J, He K (2019) Slowfast
networks for video recognition. In: ICCV 1, 3, 6, 7, 9

Gao M, Yu R, Li A, Morariu VI, Davis LS (2018) Dy-
namic zoom-in network for fast object detection in
large images. In: CVPR 4

Hazan T, Jaakkola TS (2012) On the partition function
and random maximum a-posteriori perturbations. In:
ICML 6

He K, Zhang X, Ren S, Sun J (2015) Delving deep
into rectifiers: Surpassing human-level performance
on imagenet classification. In: ICCV 1

He K, Zhang X, Ren S, Sun J (2016) Deep residual
learning for image recognition. In: CVPR 7

He K, Gkioxari G, Dollár P, Girshick R (2017) Mask
r-cnn. In: ICCV 1

He Y, Lin J, Liu Z, Wang H, Li LJ, Han S (2018) Amc:
Automl for model compression and acceleration on
mobile devices. In: ECCV 12

Heilbron FC, Escorcia V, Ghanem B, Niebles JC (2015)
Activitynet: A large-scale video benchmark for human
activity understanding. In: CVPR 2, 6

Hochreiter S, Schmidhuber J (1997) Long short-term
memory. Neural Computation 4

Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W,
Weyand T, Andreetto M, Adam H (2017) Mobilenets:
Efficient convolutional neural networks for mobile
vision applications. In: CVPR 1, 4

Hu J, Shen L, Sun G (2018) Squeeze-and-excitation
networks. In: CVPR 1

Huang G, Chen D, Li T, Wu F, van der Maaten L, Wein-
berger KQ (2018a) Multi-scale dense convolutional
networks for efficient prediction. In: ICLR 8

Huang G, Chen D, Li T, Wu F, van der Maaten L,
Weinberger KQ (2018b) Multi-scale dense networks
for resource efficient image classification. In: ICLR 4

Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally
WJ, Keutzer K (2016) Squeezenet: Alexnet-level ac-
curacy with 50x fewer parameters and <0.5mb model
size. In: arXiv:1602.07360 1

Jang E, Gu S, Poole B (2017) Categorical reparameteri-
zation with gumbel-softmax. In: ICLR 6

Jiang YG, Wu Z, Wang J, Xue X, Chang SF (2018)
Exploiting feature and class relationships in video
categorization with regularized deep neural networks.
IEEE TPAMI 2, 6

Kay W, Carreira J, Simonyan K, Zhang B, Hillier C,
Vijayanarasimhan S, Viola F, Green T, Back T, Nat-
sev P, et al. (2017) The kinetics human action video
dataset. arXiv preprint arXiv:170506950 2, 3, 6, 7

Köpüklü O, Gunduz A, Kose N, Rigoll G (2019) Real-
time hand gesture detection and classification using
convolutional neural networks. In: FG 12

Korbar B, Tran D, Torresani L (2019) Scsampler: Sam-
pling salient clips from video for efficient action recog-
nition. In: ICCV 4

A Coarse-to-Fine Framework for Resource Efficient Video Recognition 13

Kuehne H, Arslan A, Serre T (2014) The language of
actions: Recovering the syntax and semantics of goal-
directed human activities. In: CVPR 3, 10

Lei T, Zhang Y, Wang SI, Dai H, Artzi Y (2017) Simple
recurrent units for highly parallelizable recurrence.
arXiv preprint arXiv:170902755 4, 10

Li H, Kadav A, Durdanovic I, Samet H, Graf HP (2017)
Pruning filters for efficient convnets. In: ICLR 1

Li Z, Gavves E, Jain M, Snoek CG (2016) Videolstm
convolves, attends and flows for action recognition.
arXiv preprint arXiv:160701794 3

Lin J, Rao Y, Lu J, Zhou J (2017) Runtime neural
pruning. In: NIPS 4

Lin J, Gan C, Han S (2019) Tsm: Temporal shift module
for efficient video understanding. In: ICCV 4

Lin TY, Maire M, Belongie S, Bourdev L, Girshick R,
Hays J, Perona P, Ramanan D, Zitnick CL, Dollár
P (2014) Microsoft coco: Common objects in context.
In: ECCV 2

Liu Z, Miao Z, Zhan X, Wang J, Gong B, Yu SX (2019)
Large-scale long-tailed recognition in an open world.
In: CVPR 2

Maddison CJ, Mnih A, Teh YW (2017) The Concrete
Distribution: A Continuous Relaxation of Discrete
Random Variables. In: ICLR 6

Molchanov P, Gupta S, Kim K, Pulli K (2015) Multi-
sensor system for driver’s hand-gesture recognition.
In: FG 12

Najibi M, Singh B, Davis LS (2019) Autofocus: Efficient
multi-scale inference. In: ICCV 4

Ng JYH, Hausknecht M, Vijayanarasimhan S, Vinyals O,
Monga R, Toderici G (2015) Beyond short snippets:
Deep networks for video classification. In: CVPR 3

Qiu Z, Yao T, Mei T (2016) Deep quantization: Encoding
convolutional activations with deep generative model.
arXiv preprint arXiv:161109502 9

Qiu Z, Yao T, Mei T (2017) Learning spatio-temporal
representation with pseudo-3d residual networks. In:
ICCV 3

Rastegari M, Ordonez V, Redmon J, Farhadi A (2016)
Xnor-net: Imagenet classification using binary convo-
lutional neural networks. In: ECCV 1

Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: To-
wards real-time object detection with region proposal
networks. In: NeurIPS 1

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen
LC (2018) Mobilenetv2: Inverted residuals and linear
bottlenecks. In: CVPR 4, 6

Simonyan K, Zisserman A (2014) Two-stream convolu-
tional networks for action recognition in videos. In:
NIPS 3

Sutton RS, Barto AG (1998) Reinforcement learning:
An introduction. MIT press Cambridge 5, 6, 7

Tran D, Bourdev LD, Fergus R, Torresani L, Paluri M
(2015) C3d: Generic features for video analysis. In:
ICCV 1, 3, 9

Tran D, Wang H, Torresani L, Ray J, LeCun Y, Paluri
M (2018) A closer look at spatiotemporal convolutions
for action recognition. In: CVPR 3, 4

Tran D, Wang H, Torresani L, Feiszli M (2019) Video
classification with channel-separated convolutional
networks. In: ICCV 4

Uzkent B, Ermon S (2020) Learning when and where to
zoom with deep reinforcement learning. In: CVPR 4

Veit A, Belongie S (2018) Convolutional networks with
adaptive inference graphs. In: ECCV 4

Viola P, Jones MJ (2004) Robust real-time face detec-
tion. IJCV 3

Wang H, Schmid C (2013) Action recognition with im-
proved trajectories. In: ICCV 9

Wang L, Xiong Y, Wang Z, Qiao Y, Lin D, Tang X, Van
Gool L (2016) Temporal segment networks: Towards
good practices for deep action recognition. In: ECCV
1, 3, 7, 9

Wang X, Girshick R, Gupta A, He K (2018a) Non-local
neural networks. In: CVPR 1

Wang X, Yu F, Dou ZY, Gonzalez JE (2018b) Skipnet:
Learning dynamic routing in convolutional networks.
In: ECCV 4, 12

Wu CY, Zaheer M, Hu H, Manmatha R, Smola AJ,
Krähenbühl P (2018a) Compressed video action recog-
nition. In: CVPR 4

Wu W, He D, Tan X, Chen S, Wen S (2019a) Multi-
agent reinforcement learning based frame sampling
for effective untrimmed video recognition. In: ICCV
9

Wu Z, Nagarajan T, Kumar A, Rennie S, Davis LS,
Grauman K, Feris R (2018b) Blockdrop: Dynamic
inference paths in residual networks. In: CVPR 4

Wu Z, Xiong C, Jiang YG, Davis LS (2019b) Liteeval:
A coarse-to-fine framework for resource efficient video
recognition. In: NeurIPS 3

Wu Z, Xiong C, Ma CY, Socher R, Davis LS (2019c)
Adaframe: Adaptive frame selection for fast video
recognition. In: CVPR 4

Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggre-
gated residual transformations for deep neural net-
works. In: CVPR 1

Yang L, Han Y, Chen X, Song S, Dai J, Huang G (2020)
Resolution adaptive networks for efficient inference.
In: CVPR 4

Yao T, Ngo CW, Zhu S (2012) Predicting domain adap-
tivity: Redo or recycle? In: ACM Multimedia 7

Yeung S, Russakovsky O, Mori G, Fei-Fei L (2016)
End-to-end learning of action detection from frame
glimpses in videos. In: CVPR 2, 4, 7

14 Wu et al.

Zhang B, Wang L, Wang Z, Qiao Y, Wang H (2016)
Real-time action recognition with enhanced motion
vector cnns. In: CVPR 4

Zhou B, Andonian A, Oliva A, Torralba A (2018) Tem-
poral relational reasoning in videos. In: ECCV 4

Zhu C, Tan X, Zhou F, Liu X, Yue K, Ding E, Ma Y
(2018) Fine-grained video categorization with redun-
dancy reduction attention. In: ECCV 9

Zolfaghari M, Singh K, Brox T (2018) Eco: Efficient
convolutional network for online video understanding.
In: ECCV 4

